Изобретение относится к области энергетики и предназначено для автономного теплоснабжения и холодоснабжения объектов индивидуального жилья.
Известна установка для комбинированного солнечно-теплонасосного теплоснабжения /Агеева Г.Н., Лантух Н.Н., Щербатый B.C. Комбинированная солнечно-теплонасосная установка как вариант технического решения теплоснабжения. - СОК, 2005, №12/. Установка содержит систему сбора и утилизации тепла грунта, включающую контур циркуляции низкопотенциального теплоносителя, проходящий через проложенную в грунте систему пластиковых труб большой площади, контур холодоснабжения и испаритель теплового насоса, систему отопления и горячего водоснабжения (ГВС), включающую конденсатор теплового насоса, буферную емкость горячего теплоносителя, емкостной водонагреватель с двумя теплообменниками, контуры отопления и горячего водоснабжения, котел на жидком топливе, систему сбора тепла солнечной энергии, включающую контур циркуляции теплоносителя солнечного коллектора с самим солнечным коллектором, подключенный через теплообменник в контур циркуляции теплоносителя между тепловым насосом и буферной емкостью и к теплообменнику емкостного водонагревателя. Тепловая энергия в емкостной водонагреватель ГВС поступает от солнечного коллектора, преобразующего солнечную энергию в тепловую. При заполнении теплом емкостного водонагревателя идет накопление тепла в буфере-накопителе. При отсутствии солнечной радиации либо недостаточной ее интенсивности вода в верхней части емкостного водонагревателя нагревается теплом буферной емкости или котлом. Тепловая энергия в буферную емкость поступает в первую очередь от теплового насоса. Котел теплоснабжения (отопление, ГВС) запускается в случае, если запасенной тепловой энергии в буферной емкости и емкостном водонагревателе недостаточно для покрытия тепловой нагрузки отопления и горячего водоснабжения. В летние месяцы охлаждение коттеджа производится путем применения функции TH «natural cooling». Это особый режим охлаждения помещений, т.к. в этом случае, отбирая низко-потенциальное тепло земли от грунтового аккумулятора (8-12°С), потребляется лишь незначительное количество электроэнергии для работы циркуляционных насосов. При отборе тепла грунта в летние месяцы происходит еще большее охлаждение скважин, а следовательно, препятствует естественному восстановлению температуры грунта в межотопительные периоды, и дефицит температуры грунта относительно начальной его величины накапливается еще больше с каждым отопительным сезоном.
При сборе тепла грунта происходит его охлаждение, накапливаемое за отопительный сезон, а следовательно, снижение температуры подаваемого в тепловой насос теплоносителя, что ведет к снижению коэффициента преобразования теплового насоса и перерасходу электрической энергии. Естественное восстановление температуры грунта за счет солнечного излучения в межотопительный период происходит не полностью, поэтому дефицит тепла накапливается с каждым отопительным сезоном.
Недостатком известного устройства является отсутствие возможности повышения температуры подаваемого в тепловой насос низкопотенциального теплоносителя в отопительный период и восстановление температурного режима скважин в межотопительный период. Кроме того, при недостаточной интенсивности солнечной радиации солнечный коллектор не используется, так как не может обеспечить необходимую температуру воды для ГВС, что снижает общую эффективность системы.
Наиболее близким по технической сущности к предлагаемому изобретению является устройство для энергообеспечения помещений с использованием низкопотенциальных энергоносителей (патент РФ №2292000). Устройство содержит подключенные к сети теплоснабжения помещения с трубопроводами подачи холодной и горячей воды, через водоаккумуляторы с пиковыми догревателями и конденсаторы основного и дополнительного тепловых насосов, систему сбора и утилизации тепла грунта, включающую основной контур циркуляции низкопотенциального теплоносителя, проходящий через установленные в скважинах теплообменники и испаритель основного теплового насоса, а также систему сбора и утилизации тепла удаляемого из помещений вентиляционного воздуха, включающую дополнительный контур циркуляции низкопотенциального теплоносителя, проходящий через водовоздушный теплообменник, присоединенный воздушной стороной к калориферу и вентилятору подачи удаляемого воздуха, а водяной стороной к испарителю дополнительного теплового насоса, водяная сторона водовоздушного теплообменника также подключена к испарителю дополнительного теплового насоса через перемычки и связана через другие перемычки с выходами теплообменников в скважинах, с возможностью передачи тепла, собираемого на воздушной стороне теплообменника, или на догрев низкопотенциального теплоносителя в основном циркуляционном контуре перед подачей теплоносителя в испаритель основного теплового насоса, или на восстановление теплового режима охлажденных при сборе тепла грунта скважин, при этом водяная сторона водовоздушного теплообменника снабжена на выходе вилкой для разделения потока низкопотенциального теплоносителя на прямую и обратную, в теплообменник ветви, связанной с регулятором расходов теплоносителя в прямой и обратной ветви и установленным на выходе теплообменника, перед вилкой, датчиком температуры теплоносителя.
Недостатком этого устройства является недостаточно эффективное воздействие на температуру теплоносителя, подаваемого от скважинных теплообменников в тепловой насос, и тем более на восстановление температурного режима скважин. Это обусловлено тем, что воздух, удаляемый системой вентиляции, имеет низкое удельное теплосодержание и требует значительных объемов подачи, что вызывает значительное повышение кратности воздухообмена помещения, приводит к большим теплопотерям помещения. Низкое удельное теплосодержание вентиляционного воздуха также препятствует эффективному функционированию системы ГВС при работе дополнительного теплового насоса от водовоздушного теплообменника и вынуждает использовать дополнительный пиковый калорифер, что еще больше снижает эффективность устройства. Еще одним недостатком является то, что система сбора и утилизации тепла воздуха не позволяет утилизировать холодный воздух, удаляемый из помещений в летний период, когда осуществляется кондиционирование. Кроме того, конструкция устройства не позволяет в полной мере использовать различные независимые источники низкопотенциального тепла, в том числе, как и в первом аналоге, низкопотенциальной солнечной энергии и теплового потенциала окружающего воздуха.
Задачей предлагаемого изобретения является повышение эффективности системы теплоснабжения и холодоснабжения.
В результате использования предлагаемого изобретения более полно используется солнечная энергия, которая используется для догрева теплоносителя в контуре циркуляции низкопотенциального теплоносителя перед подачей в тепловой насос в отопительный период и для восстановления температурного режима скважин в межотопительный период с одновременной выработкой тепла на горячее водоснабжение с помощью вакуумированных солнечных коллекторов, а также используется потенциал окружающего воздуха на охлаждение помещений, и снижаются потери энергии с вентилируемым воздухом с помощью рекуперативной системы вентиляции.
Вышеуказанный технический результат достигается тем, что в системе автономного теплоснабжения и холодоснабжения зданий и сооружений, содержащей подключенную к системе отопления с контуром отопления теплыми полами, контуром отопления конвекторами, через аккумулятор отопительной воды с теплообменником пикового нагревателя и конденсатор теплового насоса типа «вода-вода», а также к системе горячего водоснабжения с контуром горячего водоснабжения, через емкостной водонагреватель с теплообменником пикового нагревателя и конденсатор теплового насоса типа «вода-вода», систему сбора тепла грунта, включающую контур циркуляции низкопотенциального теплоносителя, проходящий через скважинные теплообменники и испаритель теплового насоса типа «вода-вода», а также систему вентиляции с утилизацией тепла удаляемого из помещения воздуха, включающую контур циркуляции теплоносителя, проходящий через водовоздушный теплообменник, установленный в приточном вентиляционном канале вентиляционной установки, и конденсатор теплового насоса типа «воздух-вода», испаритель которого соединен с воздушным теплообменником с вентилятором, согласно изобретению конденсатор теплового насоса типа «воздух-вода» дополнительно соединен с контуром отопления конвекторами для передачи тепла в переходный период или холода в летний период, при реверсивной работе теплового насоса типа «воздух-вода», одновременно в систему отопления конвекторами и в водовоздушный теплообменник вентиляционной установки для отопления и холодоснабжения соответственно, при отключенном контуре отопления конвекторами от теплового насоса типа «вода-вода» через задвижку, с обеспечением в любое время года рекуперации тепловой энергии удаляемого из помещения воздуха, осуществляемой в системе вентиляции с помощью воздухо-воздушного теплообменника, установленного одной стороной в приточном канале с вентилятором, а другой стороной в вытяжном канале с вентилятором, и с дополнительно установленным вторым водовоздушным теплообменником, установленным в системе вентиляции воздушной стороной в приточном канале с вентилятором, а водяной стороной подключенный к системе отопления и конденсатору теплового насоса типа «вода-вода», тогда как догрев низкопотенциального теплоносителя, поступающего в конденсатор теплового насоса типа «вода-вода», или восстановление теплового режима охлажденных при отборе тепла грунта скважин с одновременной выработкой тепла на горячее водоснабжение осуществляется системой сбора тепла солнечной энергии, включающей контур циркуляции теплоносителя, проходящий через вакуумированный трубчатый коллектор и регулятор циркуляции теплоносителя, подключенный через один вывод трехходового клапана к теплообменнику, установленному в контуре циркуляции низкопотенциального теплоносителя перед испарителем теплового насоса, а через второй вывод трехходового клапана подключенный к теплообменнику, установленному в емкостном водонагревателе системы горячего водоснабжения.
Сущность изобретения поясняется чертежом, на котором изображена схема системы автономного теплоснабжения и холодоснабжения зданий и сооружений.
Система автономного теплоснабжения и холодоснабжения зданий и сооружений, содержащая подключенную к системе отопления с контуром отопления теплыми полами 1, контуром отопления конвекторами 2, через аккумулятор отопительной воды 3 с теплообменником 4 пикового нагревателя 5 и конденсатор 6 теплового насоса типа «вода-вода» 7, и к системе горячего водоснабжения с контуром горячего водоснабжения 8, через емкостной водонагреватель 9 с теплообменником пикового нагревателя 10 и теплообменник 32 соединенным с конденсатором 6 теплового насоса типа «вода-вода» 7 через трехходовой клапан 40, систему сбора тепла грунта, включающую контур циркуляции низкопотенциального теплоносителя 11, проходящий через скважинные теплообменники 12 и испаритель 13 теплового насоса типа «вода-вода» 7, а также систему вентиляции с утилизацией тепла удаляемого из помещения воздуха, включающую контур циркуляции теплоносителя 14, проходящий через водовоздушный теплообменник 15, установленный в приточном вентиляционном канале вентиляционной установки 16, и конденсатор 17 теплового насоса типа «воздух-вода» 18, испаритель 19 которого соединен с воздушным теплообменником с вентилятором 20. Конденсатор 17 теплового насоса типа «воздух-вода» 18 дополнительно соединен с контуром отопления конвекторами 2 для одновременной передачи тепла в зимний период или холода в летний период при реверсивной работе теплового насоса типа «воздух-вода» 18 в систему отопления конвекторами 2 и в водовоздушный теплообменник 15 вентиляционной установки 16 для отопления и холодоснабжения соответственно, при отключенном контуре отопления конвекторами 2 от теплового насоса типа «вода-вода» 7 через перемычки 21. Вентиляционная установка 16 также содержит рекуператор тепловой энергии удаляемого из помещения воздуха в виде воздухо-воздушного теплообменника 22, установленного одной стороной в приточном канале с вентилятором 23, а другой стороной в вытяжном канале с вентилятором 24 вентиляционной установки 16, и дополнительный водовоздушный теплообменник 25, установленный воздушной стороной в приточном канале с вентилятором 23, а водяной стороной подключенный к системе отопления с конденсатором 6 теплового насоса типа «вода-вода» 7. Догрев низкопотенциального теплоносителя, поступающего в конденсатор 6 теплового насоса типа «вода-вода» 7, или восстановление теплового режима охлажденных при отборе тепла грунта скважин 12 с одновременной выработкой тепла на горячее водоснабжение осуществляется системой сбора тепла солнечной энергии, включающей контур циркуляции теплоносителя 26, проходящий через вакуумированный трубчатый коллектор 27 и регулятор циркуляции теплоносителя 28, подключенный через один вывод трехходового клапана 29 к теплообменнику 30, установленному в контуре циркуляции низкопотенциального теплоносителя 11 перед испарителем 13 теплового насоса типа «вода-вода» 7, а через второй вывод трехходового клапана 29 подключений к теплообменнику 31, установленному в емкостном водонагревателе 9 системы горячего водоснабжения.
Циркуляция теплоносителей в контурах системы автономного теплоснабжения и холодоснабжения осуществляется насосами 33, 34, 35, 36, 37, 38, 39, а регулирование потоков тепла и холода осуществляется трехходовыми клапанами 21, 29, 40, 41, 42, 43, 44. Подпитка контуров теплоносителем осуществляется через установленные задвижки с обратным клапаном 45, 46, 47, 48, 49, 50. Все трубопроводы также снабжены запорной арматурой и группами безопасности (условно не показаны).
Работа системы осуществляется следующим образом.
В отопительный период теплоноситель с помощью насоса 33 циркулирует по контуру 11, через скважинные теплообменники 12, что сопровождается отбором тепла из грунта, теплообменник 30 и через испаритель 13 теплового насоса типа «вода-вода» 7. Термотрансформация тепла из контура 11 в систему отопления и ГВС происходит путем передачи тепла в испарителе 13 теплового насоса от нагретого низкопотенциального теплоносителя хладагенту, циркулирующему в тепловом насосе, при этом хладагент испаряется, пары хладагента сжимаются в компрессоре теплового насоса, на привод которого затрачивается электроэнергия, температура хладагента повышается и его теплота передается циркулирующему через конденсатор 6 теплового насоса теплоносителю системы отопления и системы ГВС. Теплоноситель нагревается в тепловом насосе до некоторой температуры, определяемой техническими характеристиками теплового насоса и условиями его экономичной работы (для современных тепловых насосов типа «вода-вода» рекомендуемый максимум составляет 55°С).
Нагретый в тепловом насосе теплоноситель подается в систему отопления и ГВС насосом 34, который подает его через трехходовой клапан 40, установленный с приоритетом подачи теплоносителя в систему ГВС через теплообменник 32 в емкостном водонагревателе 9, куда подается холодная вода из водопровода через задвижку 45. Циркулирующий по теплообменнику 32 теплоноситель нагревает воду в емкостном водонагревателе, и при достижении температуры воды в водонагревателе заданного значения трехходовой клапан 40 переключается на подачу теплоносителя в систему отопления. Нагретый теплоноситель, поступающий в систему отопления, заполняет аккумулятор отопительной воды 3, который служит для аккумулирования выработанной тепловым насосом тепловой энергии и создания буферной емкости для согласования разности расходов через тепловой насос и через отопительные контуры системы отопления. Из аккумулятора отопительной воды теплоноситель подается в контур отопления теплым полом с помощью насоса 37 и контур отопления конвекторами с помощью насоса 38 через открытую задвижку 21. При достижении температуры теплоносителя в аккумуляторе отопительной воды заданной величины тепловой насос отключается, и отбор тепла осуществляется только от аккумулятора.
Пиковый нагреватель 5 используется в наиболее холодные периоды, так как мощность теплового насоса выбирается для покрытия только средней величины нагрузки отопления и ГВС. Пиковый нагреватель работающий, например, на газообразном топливе, нагревает теплоноситель и подает его через трехходовой клапан 41 на теплообменники 10 и 4 соответственно в емкостной водонагреватель 9 системы ГВС и аккумулятор отопительной воды 4 системы отопления.
В периоды интенсивной солнечной радиации приготовление воды для ГВС происходит преимущественно от вакуумированного солнечного коллектора 27. При этом теплоноситель, нагретый в вакуумированном солнечном коллекторе 27, с помощью насоса 39 регулятора 28 по контуру 27, через трехходовой клапан 29 подается в теплообменник 31 емкостного водонагревателя 9. В водонагревателе теплоноситель отдает свою теплоту воде системы ГВС и возвращается в солнечный коллектор. При достижении температуры в емкостном водонагревателе заданной величины трехходовой клапан 29 подключает контур 27 к теплообменнику 30, установленному в контуре циркуляции низкопотенциального теплоносителя 11. Таким образом, осуществляется догрев низкопотенциального теплоносителя перед подачей его в тепловой насос. Это позволяет компенсировать снижение температуры теплоносителя вследствие охлаждения скважин при отборе тепла грунта в течение отопительного сезона и повышать эффективность работы теплового насоса путем снижения электропотребления на привод компрессора за счет более высокой температуры низкопотенциального теплоносителя в испарителе. В межотопительный период с помощью теплоты, получаемой в вакуумированном солнечном коллекторе, происходит полное восстановление температурного режима скважин в перерывах работы коллектора на приготовление воды в системе ГВС, когда тепловой насос не задействован. При низкой интенсивности солнечной радиации, когда температура в контуре 27 не достигает заданной величины, пригодной для приготовления воды для ГВС, вакуумированный солнечный коллектор также используется для компенсации снижения температуры низкопотенциального теплоносителя в контуре 11.
В переходный период, когда требуется незначительное подтапливание помещений, включается в работу тепловой насос типа «воздух-вода» 18. Наружный воздух, пропускаемый вентилятором через воздушный теплообменник 20, отдает свою теплоту в испарителе 19 низкокипящему хладагенту, циркулирующему в тепловом наосе 18, хладагент испаряется, сжимается в компрессоре, на привод которого затрачивается электроэнергия, температура хладагента повышается и его теплота передается циркулирующему через конденсатор 17 теплоносителю. Нагретый теплоноситель насосом 35 подается в контур отопления конвекторами 2, отключенный от остальной системы отопления задвижкой 21. Отопление в этом режиме осуществляется только конвекторами. Тепловой насос типа «вода-вода» 7 включается только для приготовления воды для ГВС в периоды низкой интенсивности солнечной радиации. В остальное время вакуумированный солнечный коллектор полностью обеспечивает теплопотребление в системе ГВС и частично обеспечивает восстановление температурного режима скважинных теплообменников.
В летнее время кондиционирование помещений также обеспечивает тепловой насос «воздух-вода» 18, работающий в реверсивном режиме. При этом его испаритель становится конденсатором, а конденсатор испарителем. Теплоизбытки помещений снимаются с помощью конвекторов 2, отключенных от остальной системы отопления задвижкой 21, и теплообменника 15, установленного в приточном канале вентиляционной установки 16, перед теплообменником 25 и вентилятором 23. Избыточная теплота помещения через конвекторы 2 системы отопления и теплообменник 15 вентиляционной системы передается общему теплоносителю, циркулирующему в контуре 14, при помощи насоса 35, соединенного с испарителем теплового насоса 18. Избыточная теплота теплоносителя путем трансформации в тепловом насосе 18 сбрасывается через конденсатор 19 и воздушный теплообменник 20 в окружающую среду. Тепловой насос типа «вода-вода» 7, как и в переходном периоде, включается только для приготовления воды для ГВС в периоды низкой интенсивности солнечной радиации.
Для поддержания микроклимата в помещениях в течение всего года система вентиляции поддерживает требуемую кратность воздухообмена с помощью вентиляционной установки 16. В отопительный период вытяжной вентилятор 24 подает отработанный воздух с избыточным теплосодержанием из помещений наружу, при этом воздух проходит через рекуперативный теплообменник 22, отдавая тепло проходящему через этот же рекуперативный теплообменник свежему воздуху с низким теплосодержанием, подаваемому вентилятором 23 снаружи в помещения. Тем самым обеспечивается энергосбережение за счет уменьшения теплопотребления в системе отопления и сокращение времени работы теплового насоса. Для дополнительного подогрева подаваемого в помещения наружного воздуха в приточном канале вентиляционной установки перед приточным вентилятором установлен водовоздушный теплообменник 25, подсоединенный водяной стороной к системе отопления контуром циркуляции теплоносителя 51, с циркуляционным насосом 36 и трехходовым регулирующим клапаном 44. В летнее время отработанный воздух с низким теплосодержанием, удаляемый из помещения наружу, проходя через рекуперативный теплообменник 22, отбирает избыточную теплоту у подаваемого в помещение свежего наружного воздуха с высоким теплосодержанием, обеспечивая энергосбережение на кондиционирование помещений.
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА АВТОНОМНОГО ТЕПЛОСНАБЖЕНИЯ ПОТРЕБИТЕЛЕЙ С ИСПОЛЬЗОВАНИЕМ НИЗКОПОТЕНЦИАЛЬНОГО ИСТОЧНИКА ТЕПЛА И ЭЛЕКТРОСНАБЖЕНИЯ ОТ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ | 2007 |
|
RU2350847C1 |
УСТАНОВКА АВТОНОМНОГО ТЕПЛО-И ХОЛОДОСНАБЖЕНИЯ ЗДАНИЙ И СООРУЖЕНИЙ | 2010 |
|
RU2455574C1 |
УСТРОЙСТВО ДЛЯ ЭНЕРГООБЕСПЕЧЕНИЯ ПОМЕЩЕНИЙ С ИСПОЛЬЗОВАНИЕМ НИЗКОПОТЕНЦИАЛЬНЫХ ЭНЕРГОНОСИТЕЛЕЙ | 2005 |
|
RU2292000C1 |
СИСТЕМА АВТОНОМНОГО ОБОГРЕВА ПОМЕЩЕНИЙ | 2010 |
|
RU2429423C1 |
Система автономного энергоснабжения жилого дома | 2019 |
|
RU2746434C1 |
СИСТЕМА КОМБИНИРОВАННОГО СОЛНЕЧНОГО ЭНЕРГОСНАБЖЕНИЯ | 2011 |
|
RU2459152C1 |
СИСТЕМА АВТОНОМНОГО ЭЛЕКТРО- И ТЕПЛОСНАБЖЕНИЯ ЖИЛЫХ И ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ | 2013 |
|
RU2535899C2 |
СИСТЕМА ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ | 2020 |
|
RU2793831C2 |
СПОСОБ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ | 2013 |
|
RU2561846C2 |
Теплонасосная система отопления и горячего водоснабжения помещений | 2017 |
|
RU2657209C1 |
Изобретение относится к области энергетики и предназначено для автономного теплоснабжения и холодоснабжения объектов индивидуального жилья. Технический результат: повышение эффективности системы теплоснабжения и холодоснабжения. Система автономного теплоснабжения и холодоснабжения зданий и сооружений, содержащая подключенную к системе отопления с контуром отопления теплыми полами, контуром отопления конвекторами, через аккумулятор отопительной воды с теплообменником пикового нагревателя и конденсатор теплового насоса типа «вода-вода», а также к системе горячего водоснабжения с контуром горячего водоснабжения, через емкостной водонагреватель с теплообменником пикового нагревателя и конденсатор теплового насоса типа «вода-вода», систему сбора тепла грунта, включающую контур циркуляции низкопотенциального теплоносителя, проходящий через скважинные теплообменники и испаритель теплового насоса типа «вода-вода», а также систему вентиляции с утилизацией тепла удаляемого из помещения воздуха, включающую контур циркуляции теплоносителя, проходящий через водовоздушный теплообменник, установленный в приточном вентиляционном канале вентиляционной установки, и конденсатор теплового насоса типа «воздух-вода», испаритель которого соединен с воздушным теплообменником с вентилятором. Конденсатор теплового насоса типа «воздух-вода» дополнительно соединен с контуром отопления конвекторами для передачи тепла в переходный период или холода в летний период, при реверсивной работе теплового насоса типа «воздух-вода», одновременно в систему отопления конвекторами и в водовоздушный теплообменник вентиляционной установки для отопления и холодоснабжения соответственно, при отключенном контуре отопления конвекторами от теплового насоса типа «вода-вода» через задвижку, с обеспечением в любое время года рекуперации тепловой энергии удаляемого из помещения воздуха, осуществляемой в системе вентиляции с помощью воздухо-воздушного теплообменника, установленного одной стороной в приточном канале с вентилятором, а другой стороной в вытяжном канале с вентилятором, и с дополнительно установленным вторым водовоздушным теплообменником, установленным в системе вентиляции воздушной стороной в приточном канале с вентилятором, а водяной стороной подключенный к системе отопления и конденсатору теплового насоса типа «вода-вода», тогда как догрев низкопотенциального теплоносителя, поступающего в конденсатор теплового насоса типа «вода-вода», или восстановление теплового режима охлажденных при отборе тепла грунта скважин с одновременной выработкой тепла на горячее водоснабжение осуществляется системой сбора тепла солнечной энергии, включающей контур циркуляции теплоносителя, проходящий через вакуумированный трубчатый коллектор и регулятор циркуляции теплоносителя, подключенный через один вывод трехходового клапана к теплообменнику, установленному в контуре циркуляции низкопотенциального теплоносителя перед испарителем теплового насоса, а через второй вывод трехходового клапана подключенный к теплообменнику, установленному в емкостном водонагревателе системы горячего водоснабжения. 1 ил.
Система автономного теплоснабжения и холодоснабжения зданий и сооружений, содержащая подключенную к системе отопления с контуром отопления теплыми полами, контуром отопления конвекторами, через аккумулятор отопительной воды с теплообменником пикового нагревателя и конденсатор теплового насоса типа «вода-вода», а также к системе горячего водоснабжения с контуром горячего водоснабжения, через емкостный водонагреватель с теплообменником пикового нагревателя и конденсатор теплового насоса типа «вода-вода» систему сбора тепла грунта, включающую контур циркуляции низкопотенциального теплоносителя, проходящий через скважинные теплообменники и испаритель теплового насоса типа «вода-вода», а также систему вентиляции с утилизацией тепла удаляемого из помещения воздуха, включающую контур циркуляции теплоносителя, проходящий через водовоздушный теплообменник, установленный в приточном вентиляционном канале вентиляционной установки, и конденсатор теплового насоса типа «воздух-вода», испаритель которого соединен с воздушным теплообменником с вентилятором, отличающаяся тем, что конденсатор теплового насоса типа «воздух-вода» дополнительно соединен с контуром отопления конвекторами для передачи тепла в переходный период или холода в летний период, при реверсивной работе теплового насоса типа «воздух-вода» одновременно в систему отопления конвекторами и в водовоздушный теплообменник вентиляционной установки для отопления и холодоснабжения соответственно, при отключенном контуре отопления конвекторами от теплового насоса типа «вода-вода» через задвижку, с обеспечением в любое время года рекуперации тепловой энергии удаляемого из помещения воздуха, осуществляемой в системе вентиляции с помощью воздуховоздушного теплообменника, установленного одной стороной в приточном канале с вентилятором, а другой стороной - в вытяжном канале с вентилятором, и с дополнительно установленным вторым водовоздушным теплообменником, установленным в системе вентиляции воздушной стороной в приточном канале с вентилятором, а водяной стороной подключенный к системе отопления и конденсатору теплового насоса типа «вода-вода», тогда как догрев низкопотенциального теплоносителя, поступающего в конденсатор теплового насоса типа «вода-вода», или восстановление теплового режима охлажденных при отборе тепла грунта скважин с одновременной выработкой тепла на горячее водоснабжение осуществляется системой сбора тепла солнечной энергии, включающей контур циркуляции теплоносителя, проходящий через вакуумированный трубчатый коллектор и регулятор циркуляции теплоносителя, подключенный через один вывод трехходового клапана к теплообменнику, установленному в контуре циркуляции низкопотенциального теплоносителя перед испарителем теплового насоса, а через второй вывод трехходового клапана подключенный к теплообменнику, установленному в емкостном водонагревателе системы горячего водоснабжения.
УСТРОЙСТВО ДЛЯ ЭНЕРГООБЕСПЕЧЕНИЯ ПОМЕЩЕНИЙ С ИСПОЛЬЗОВАНИЕМ НИЗКОПОТЕНЦИАЛЬНЫХ ЭНЕРГОНОСИТЕЛЕЙ | 2005 |
|
RU2292000C1 |
Раздвижной патрон для крашения, беления и тому подобной обработки пряжи в бобинах | 1939 |
|
SU56415A1 |
СИСТЕМА СНАБЖЕНИЯ ЗДАНИЯ ТЕПЛОМ И ХОЛОДНОЙ ВОДОЙ (СИСТЕМА 3 Т) | 2005 |
|
RU2287743C1 |
СИСТЕМА ТЕПЛОСНАБЖЕНИЯ ЗДАНИЯ | 2004 |
|
RU2265776C1 |
ВАСИЛЬЕВ Г.П | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Ж.: "АВОК", 2002, №4, с.10-18. |
Авторы
Даты
2010-02-20—Публикация
2008-12-03—Подача