Изобретение относится к нефтедобывающей промышленности, в частности к технологии изоляции вод, интенсификации притока нефти и повышения нефтеотдачи пластов.
Одной из особенностей карбонатных коллекторов является их неоднородность, проявляющаяся в том, что в пределах одного пласта поровые каналы имеют размеры, варьирующиеся в очень широких пределах. Высокая трещиноватость предопределяет различную проницаемость коллектора в вертикальном и горизонтальном направлениях. Указанные факторы становятся решающими при обводнении карбонатных коллекторов и создают серьезные проблемы при изоляции водопритоков.
При добыче нефти вода прорывается к скважинам по трещинам, а нефть из пористых элементов пласта (матриц) не вытесняется. Для добычи нефти в подобных условиях следует решить задачу создания таких способов обработки скважин, которые одновременно позволяют перекрыть водопроводящие каналы и повысить проницаемость матриц, а в итоге уменьшить приток воды и увеличить добычу нефти.
При эксплуатации карбонатных залежей для увеличения притока нефти в скважины используются различного вида обработки: простые солянокислотные, термокислотные, пенокислотные, нефтекислотные и другие. Опыт их проведения показал, что с увеличением обводнения добываемой продукции более 20-50% эффективность обработок скважин резко снижается и их проведение становится нерентабельным.
Известен способ кислотной обработки скважин с предварительной закачкой раствора гидролизованного полиакрилонитрила с концентрацией от 5 до 20 вес.% [АС №840309 «Способ кислотной обработки нефтегазоносного пласта»]. Недостатком известного способа является обратный вынос образующегося осадка вследствие постепенного растворения в опресненной воде эластичной массы полимера, способного неограниченно растворяться в воде.
Известен также способ изоляции водопритока в нефтяной скважине, включающий закачку в качестве изолирующего материала гипана и продавливание его в водоносную часть пласта минерализованной пластовой водой и обработку перед закачкой гипана водоносной части пласта разбавленным раствором соляной кислоты и разбавленным раствором гипана, проявляющим полиэлектролитные свойства [Патент РФ №2186941 «Способ изоляции водопритока в нефтяной скважине», E21B 33/138, 43/32].
Также известен способ кислотной обработки трещиновато-пористых коллекторов с высокой обводненностью [Патент РФ №2171371 «Способ кислотной обработки трещиновато-пористых коллекторов с высокой обводненностью», E21B 43/27, 43/22], включающий насыщение обводненных каналов коллектора алюмосодержащей жидкостью - отходом производства изопропилбензола, прокачку буферного слоя пресной воды, затем прокачку гидролизованных в щелочи волокон или тканей полиакрилонитрила, последующую закачку пресной воды и кислоты.
Недостатком известных способов является их низкая эффективность.
Наиболее близким техническим решением к заявленному изобретению по совокупности признаков, т.е. прототипом, является способ обработки обводненных карбонатных трещиновато-пористых гидрофобизированных коллекторов, заключающийся в предварительном насыщении высокообводненных каналов коагулянтом - 20%-ным раствором хлористого кальция - с последующей прокачкой буферного слоя пресной воды и затем гидролизованных в щелочи отходов волокна или тканей полиакрилонитрила, закачке пресной воды и солянокислотном воздействии, которое осуществляется путем закачки в призабойную зону нагретой до 85°С смеси соляной кислоты с хлористым магнием [Патент РФ №2270914 «Способ обработки обводненных карбонатных трещиновато-пористых гидрофобизированных коллекторов», E21B 43/27].
Недостатком указанного способа является невозможность эффективной водоизоляции коллектора из-за того, что физические характеристики изолирующей (кольматирующей) композиции не позволяют кольматировать как особо крупные поры или трещины, так и проникать в мелкие поры, изолируя только поры среднего размера. Таким образом, не достигается эффективная водоизоляция пропластков с широким диапазоном проницаемости.
Задачей изобретения является повышение эффективности водоизоляции (кольматации) обводнившихся пропластков пород в нефтяных пластах с неоднородными фильтрационными свойствами.
Указанная задача решается тем, что в способе обработки обводненных карбонатных коллекторов, включающем предварительное насыщение высокообводненных каналов коагулянтом путем закачки 20%-ного раствора хлористого кальция, последующую закачку буферного слоя пресной воды, затем раствора гидролизованных в щелочи отходов волокна или тканей полиакрилонитрила - ГОПАН, буферного слоя пресной воды и осуществление солянокислотного воздействия, указанную закачку повторяют, причем в состав первой порции раствора ГОПАН дополнительно вводят 0,1-1,0% сухих негидролизованных измельченных отходов волокна полиакрилонитрила (ПАН), осуществляют закачку первой порции раствора ГОПАН при давлении закачки на устье скважины, равном 20% от давления гидроразрыва обрабатываемого пласта, закачку каждой последующей порции раствора ГОПАН - с повышением давления закачки на устье скважины относительно предыдущей на 10% от давления гидроразрыва обрабатываемого пласта, причем давление закачки не должно превышать 50% от давления гидроразрыва обрабатываемого пласта, каждую последующую порцию раствора ГОПАН, начиная с третьей, разбавляют водой по отношению к предыдущей в 2 раза.
Сущность изобретения заключается в следующем.
При закачке первой порции гидролизованных в щелочи отходов полиакрилонитрильного волокна (водоизолирующей композиции) из-за их максимальной вязкости в пласте кольматируются наиболее крупные каналы. Для усиления кольматирующего эффекта особо крупных пор и трещин в первую порцию вводят 0,1-1,0% сухих негидролизованных измельченных отходов полиакрилонитрильного волокна, которые представляют собой мелкодисперсный материал с активной высокоразвитой поверхностью. За счет хемосорбции формирующегося осадкогеля на поверхности негидролизованных измельченных отходов полиакрилонитрильного волокна прочность кольматационного экрана повышается.
Волокна, проникшие в пласт, в последующем набухают, обеспечивая максимальную степень кольматации пор.
В то же время высоковязкая водоизолирующая композиция из-за высокой вязкости не проникает в поры меньших размеров. Поэтому для снижения ее вязкости последующую порцию водоизолирующей композиции разбавляют в два раза, тем самым снижая ее вязкость и обеспечивая ее проникновение в поры меньших размеров.
Следующая порция водоизолирующей композиции также разбавляется в два раза по отношению к предыдущей и позволяет кольматировать каналы еще меньших размеров. Таким образом, последовательная закачка жидкостей со ступенчато уменьшающейся вязкостью позволяет заполнить водоизолирующей композицией поры пласта всех размеров и обеспечить надежную водоизоляцию пласта.
В таблице 1 показано изменение вязкости водоизолирующей композиции при добавлении в раствор ГОПАН различных количеств сухих негидролизованных измельченных отходов волокна полиакрилонитрила.
Условная вязкость определялась по стандартному полевому вискозиметру СПВ-5.
Из таблицы 1 видно, что добавление ПАН в ГОПАН менее 0,1% не меняет условной вязкости ГОПАН, т.е. не влияет на изолирующую способность. Добавление ПАН более 1% делает ГОПАН непрокачиваемым.
Для того чтобы обеспечить глубокое проникновение водоизолирующей композиции при ее продавке в пласт, на устье скважины создается давление, которое при закачке первой порции составляет 20% от давления гидроразрыва, а при закачке последующей порции увеличивается до 30% от давления гидроразрыва, и так при закачке каждой последующей порции. Это связано с тем, что несмотря на снижение вязкости водоизолирующей композиции из-за уменьшения размера каналов при закачке каждой последующей порции водоизолирующей композиции гидравлические сопротивления при закачке будут возрастать, и для их преодоления необходимо повышать давление закачки. Максимальное значение давления закачки не должно превышать 50% от давления гидроразрыва пласта, т.е. коэффициент запаса прочности пласта должен быть не менее 2.
Таким образом, совокупность признаков заявляемого способа, заключающаяся в последовательном заполнении водоизолирующей композицией всех обводненных пор пласта, начиная с самых крупных до самых мелких, и тем самым повышающая качество работ по водоизоляции пласта, позволяет сделать вывод о соответствии технического решения критериям изобретения «новизна».
В научно-технической литературе известно применение различных технических решений для повышения качества водоизоляции высокопроницаемых коллекторов, в том числе и используемых в данном изобретении.
В частности, из патентной литературы известно использование гидролизованных в щелочи отходов полиакрилонитрильного волокна [Патент РФ №2171371 «Способ кислотной обработки трещиновато-пористых коллекторов с высокой обводненностью», E21B 43/27, 43/22]. Однако в литературе не упоминается о последовательной закачке водоизолирующих композиций с уменьшающейся вязкостью. Все применяемые водоизолирующие композиции имели постоянную вязкость, что приводило к изоляции только крупных каналов при высокой вязкости композиции или уходу в высокопористые пласты маловязких водоизолирующих композиций при попытке изоляции пор мелких размеров.
Таким образом, применение всего комплекса приемов, предложенных в изобретении, позволяет обеспечить не достигавшийся ранее эффект одновременной изоляции пор различного размера и проницаемости одной водоизолирующей композицией.
Это свидетельствует о соответствии предлагаемого изобретения критерию «изобретательский уровень».
Эффективность заявленного способа и способа по прототипу оценивалась на установке исследования проницаемости кернов (УИПК). В качестве пористой среды были отобраны карбонатные образцы пород (керны) с проницаемостью по воде 0,307 мкм2, 0,375 мкм2, 2,404 мкм2, 2,501 мкм2.
После закачки реагентов по прототипу и заявленному способу определялась степень кольматации ,
где Ko - начальная проницаемость образца, мкм2; Kk - конечная проницаемость образца, мкм) при положительном (репрессии) и отрицательном (депрессии) дифференциальных давлениях).
Результаты представлены в таблице 2.
Из приведенной таблицы видно, что закачивание реагентов по прототипу дает степень кольматации при репрессии - 88%, 81%, при депрессии - 56%, 67,48%, а закачивание реагентов по предлагаемому способу повышает степень кольматации при репрессии до 99,83%, 99,88%, при депрессии до 98,37%, 98,5%.
Это объясняется тем, что снижение проницаемости кернов в прототипе осуществляется по механизму коркообразования, т.е. без проникновения осадка в глубину пласта, что при отрицательном дифференциальном давлении приводит к выносу образующегося осадка и снижению эффективности водоизоляции.
В предлагаемом способе снижение проницаемости пласта происходит внутри пласта путем создания кольматационного экрана, поэтому обеспечивается высокая степень кольматации как на репрессии, так и при депрессии.
Реализация предлагаемого способа осуществляется в следующей последовательности:
1. Проводят комплекс геофизических и промысловых исследований, определяют приемистость пласта при давлении 6-8 МПа закачкой 3-6 м3 жидкости.
2. В скважину на герметичных насосно-компрессорных трубах диаметром 73 мм опускают пакер, промывают скважину, устанавливают пакер (проводят его распакеровку) на 10-15 м выше верхней отметки перфорации, а нижний конец труб - на уровне нижней отметки.
3. Закачивают ингредиенты в следующей последовательности:
- расчетный объем 20%-ного хлористого кальция;
- буферный слой пресной воды 0,5-1,0 м3;
- расчетный объем ГОПАН с концентрацией 10% + 0,1% ПАН при давлении, равном 20% от давления гидроразрыва обрабатываемого пласта;
- буферный слой пресной воды 0,5-1,0 м3;
- расчетный объем 20%-ного хлористого кальция;
- буферный слой пресной воды 0,5-1,0 м3;
- расчетный объем ГОПАН с концентрацией 10% при давлении, равном 30% от давления гидроразрыва обрабатываемого пласта;
- буферный слой пресной воды 0,5-1,0 м3;
- расчетный объем 20%-ного хлористого кальция;
- буферный слой пресной воды 0,5-1,0 м3;
- расчетный объем ГОПАН с концентрацией 5%, получаемой путем разбавления водой предыдущей порции ГОПАН в 2 раза, при давлении закачки на устье скважины, равном 40% от давления гидроразрыва обрабатываемого пласта;
- буферный слой пресной воды 0,5-1,0 м3;
- расчетный объем 20%-ного хлористого кальция;
- буферный слой пресной воды 0,5-1,0 м3;
- расчетный объем ГОПАН с концентрацией 2,5%, получаемой путем разбавления водой предыдущей порции ГОПАН в 2 раза, при давлении закачки на устье скважины, равном 50% от давления гидроразрыва обрабатываемого пласта;
- буферный слой пресной воды 0,5-1,0 м3;
- 15%-ный раствор соляной кислоты;
- продавочная жидкость (техническая вода) в количестве 1,5 объема насосно-компрессорных труб.
Концентрации растворов выражены в массовых процентах.
4. Скважину оставляют в покое 12-16 часов для коагуляции изолирующей смеси.
5. После завершения реакции срывают пакер, промывают скважину технической водой в объеме не менее 0,5 объема скважины обратной промывкой.
7. Поднимают пакер, спускают глубинно-насосное оборудование и вводят скважину в эксплуатацию.
Предлагаемый способ применили для обработки добывающей скважины №130 Черновского месторождения. Данная скважина эксплуатирует продуктивный карбонатный пласт В-2 (верейский). До обработки скважины: дебит по жидкости 22 м3/сут, дебит по нефти 4,4 м3/сут, обводненность 80%. Давление гидроразрава пласта 32 МПа.
В скважину №130 последовательно закачали:
- хлористый кальций 20%, 6 м3;
- пресную воду, 1 м3;
- ГОПАН 10% + 0,1% ПАН, 5 м3 при давлении закачки на устье скважины 20% от давления гидроразрыва пласта - 6,4 МПа;
- пресную воду, 1 м3;
- хлористый кальций 20%, 6 м3;
- пресную воду, 1 м3;
- ГОПАН 10%, 5 м при давлении закачки на устье скважины 30% от давления гидроразрыва пласта - 9,6 МПа;
- пресную воду, 1 м3;
- хлористый кальций 20%, 6 м3;
- пресную воду, 1 м3;
- ГОПАН 5%, 5 м3 при давлении закачки на устье скважины 40% от давления гидроразрыва пласта - 12,8 МПа;
- пресную воду, 1 м3;
- 15%-ный раствор соляной кислоты, 5 м3;
- продавочную жидкость в количестве 1,5 объема насосно-компрессорных труб.
Скважину оставили на 12 часов для коагуляции изолирующей смеси.
После завершения реакции сорвали пакер, промыли скважину технической водой в объеме 0,5 объема скважины обратной промывкой, спустили глубинно-насосное оборудование и ввели скважину в эксплуатацию.
После обработки скважины: дебит по жидкости 5,6 м3/сут, обводненность 13% (снизилась на 96%), дебит по нефти 5,9 м3/сут (увеличился на 34%). Продолжительность воздействия 12 месяцев.
Таким образом, применение заявленного способа в нефтегазодобывающей промышленности позволяет:
- повысить эффективность водоизоляции (кольматации) обводнившихся пропластков пород в нефтяных пластах с неоднородными фильтрационными свойствами;
- уменьшить обводненность добываемой продукции и объем попутной воды;
- повысить эффективность извлечения нефти из неоднородных карбонатных коллекторов.
Данный пример реализации способа указывает на соответствие предлагаемого изобретения критерию «промышленная применимость».
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОГРАНИЧЕНИЯ ВОДОПРИТОКА В ТРЕЩИНОВАТЫХ КАРБОНАТНЫХ КОЛЛЕКТОРАХ | 2015 |
|
RU2614997C1 |
СПОСОБ ОГРАНИЧЕНИЯ ВОДОПРИТОКА В ОБВОДНЕННЫХ КАРБОНАТНЫХ КОЛЛЕКТОРАХ | 2016 |
|
RU2619778C1 |
СПОСОБ ГИДРАВЛИЧЕСКОГО РАЗРЫВА КАРБОНАТНОГО ПЛАСТА | 2011 |
|
RU2460875C1 |
Способ гидравлического разрыва пласта на карбонатной залежи высоковязкой нефти | 2022 |
|
RU2784709C1 |
СПОСОБ ОБРАБОТКИ ПРОДУКТИВНОГО ПЛАСТА ВОДОИЗОЛИРУЮЩЕЙ КОМПОЗИЦИЕЙ | 2008 |
|
RU2374425C1 |
ПОЛИМЕРНЫЙ СОСТАВ ДЛЯ ВНУТРИПЛАСТОВОЙ ВОДОИЗОЛЯЦИИ | 2013 |
|
RU2524738C1 |
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА | 2014 |
|
RU2566344C1 |
СПОСОБ УВЕЛИЧЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ | 2022 |
|
RU2793709C1 |
СПОСОБ КИСЛОТНОЙ ОБРАБОТКИ ТРЕЩИНОВАТО-ПОРИСТЫХ КОЛЛЕКТОРОВ С ВЫСОКОЙ ОБВОДНЕННОСТЬЮ | 2000 |
|
RU2171371C1 |
СПОСОБ ОБРАБОТКИ ОБВОДНЕННЫХ КАРБОНАТНЫХ ТРЕЩИНОВАТО-ПОРИСТЫХ ГИДРОФОБИЗИРОВАННЫХ КОЛЛЕКТОРОВ | 2004 |
|
RU2270914C1 |
Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности водоизоляции обводнившихся пропластков пород в нефтяных пластах с неоднородными фильтрационными свойствами. В способе обработки обводненных карбонатных коллекторов, включающем предварительное насыщение высокообводненных каналов коагулянтом путем закачки 20%-ного раствора хлористого кальция, последующую закачку буферного слоя пресной воды, затем раствора гидролизованных в щелочи отходов волокна или тканей полиакрилонитрила - ГОПАН, буферного слоя пресной воды и осуществление солянокислотного воздействия, указанную закачку повторяют, причем в состав первой порции раствора ГОПАН дополнительно вводят 0,1-1,0% сухих негидролизованных измельченных отходов волокна полиакрилонитрила, осуществляют закачку первой порции раствора ГОПАН при давлении закачки на устье скважины, равном 20% от давления гидроразрыва обрабатываемого пласта, закачку каждой последующей порции раствора ГОПАН - с повышением давления закачки на устье скважины относительно предыдущей на 10% от давления гидроразрыва обрабатываемого пласта, причем давление закачки не должно превышать 50% от давления гидроразрыва обрабатываемого пласта, каждую последующую порцию раствора ГОПАН, начиная с третьей, разбавляют водой по отношению к предыдущей в 2 раза. 2 табл.
Способ обработки обводненных карбонатных коллекторов, включающий предварительное насыщение высокообводненных каналов коагулянтом путем закачки 20%-ного раствора хлористого кальция, последующую закачку буферного слоя пресной воды, затем раствора гидролизованных в щелочи отходов волокна или тканей полиакрилонитрила - ГОПАН, буферного слоя пресной воды и осуществление солянокислотного воздействия, отличающийся тем, что указанную закачку повторяют, причем в состав первой порции раствора ГОПАН дополнительно вводят 0,1-1,0% сухих негидролизованных измельченных отходов волокна полиакрилонитрила, осуществляют закачку первой порции раствора ГОПАН при давлении закачки на устье скважины, равном 20% от давления гидроразрыва обрабатываемого пласта, закачку каждой последующей порции раствора ГОПАН - с повышением давления закачки на устье скважины относительно предыдущей на 10% от давления гидроразрыва обрабатываемого пласта, причем давление закачки не должно превышать 50% от давления гидроразрыва обрабатываемого пласта, каждую последующую порцию раствора ГОПАН, начиная с третьей, разбавляют водой по отношению к предыдущей в 2 раза.
СПОСОБ ОБРАБОТКИ ОБВОДНЕННЫХ КАРБОНАТНЫХ ТРЕЩИНОВАТО-ПОРИСТЫХ ГИДРОФОБИЗИРОВАННЫХ КОЛЛЕКТОРОВ | 2004 |
|
RU2270914C1 |
СПОСОБ КИСЛОТНОЙ ОБРАБОТКИ ТРЕЩИНОВАТО-ПОРИСТЫХ КОЛЛЕКТОРОВ С ВЫСОКОЙ ОБВОДНЕННОСТЬЮ | 2000 |
|
RU2171371C1 |
СПОСОБ ИЗОЛЯЦИИ ВОДОПРИТОКА В НЕФТЯНОЙ СКВАЖИНЕ | 2001 |
|
RU2186941C1 |
Способ кислотной обработки нефте-гАзОНОСНОгО плАСТА | 1979 |
|
SU840309A1 |
US 5297629 A, 29.03.1994 | |||
ВЫГОДСКИЙ М.Я | |||
Справочник по элементарной математике | |||
- М.: Наука, 1976, с.103. |
Авторы
Даты
2010-03-10—Публикация
2008-07-15—Подача