ПРИБОР НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ Российский патент 2010 года по МПК H01L41/18 H03H9/25 

Описание патента на изобретение RU2383969C1

Изобретение относится к области электронных приборов, а более конкретно к приборам на основе поверхностных акустических волн (ПАВ). Области применения устройства - телекоммуникационная техника, сенсоры для медицины, биологии, экологии.

Известны устройства на ПАВ, состоящие из пленки пьезоэлектрика, размещенной на полупроводниковой подложке, причем на поверхности пьезоэлектрика сформированы две группы электропроводящих контактов, каждая из которых представляет собой гребенчатые встречно-штыревые преобразователи (ВШП) [Morgan D. Surface Acoustic Wave Filters. Acad. Press., 2007, p.448]. Устройства на ПАВ функционируют следующим образом. Одна из групп ВШП воспринимает внешний сигнал в виде электромагнитной волны, благодаря чему в пленке пьезоэлектрика возбуждаются ПАВ. ПАВ распространяются по пьезоэлектрику к другой группе ВШП, в которой они преобразуются в электромагнитную волну (выходной сигнал устройства), частота которой определяется отношением скорости звука в пьезоэлектрике V к геометрическому фактору λ, определяемого размерами элементов, составляющих ВШП. Таким образом при одинаковой геометрии ВШП частота выходного сигнала тем больше, чем больше скорость звука в пьезоэлектрике. Характеристики ПАВ зависят также от массы ВШП - чем больше масса, тем больше потери сигнала и тем сильнее уменьшается рабочая частота.

Характерным примером устройства на ПАВ является сенсор [Wu С.Fabrication on Surface Acoustic Wave Sensors for Early Cancer Detection. NNIN REU 2006 Research Accomplishments, p.26], в котором использован слой пьезоэлектрика ниобата лития, расположенный на кремниевой подложке, а ВШП изготовлены на основе двухслойной системы хром-золото.

Недостатком такого устройства являются значительные потери сигнала, обусловленные большой массой ВШП.

Замена системы Cr-Au на легкий металл Аl позволяет частично исправить этот недостаток [Ahmadi S., Hassani F., Korman C., at oth. Characterization of multi-and single-layer structure SAW sensor, M. Sensors, 2004. Proceedings of IEEE, v.3, October 2004, P.1129-1132]. В этой работе в качестве пьезоэлектрика также использовался ниобат лития.

Однако в обоих приведенных примерах рабочая частота устройства была ограничена скоростью звука в ниобате лития, что снижает возможности их применения в диапазоне сверх высоких частот.

Этот недостаток частично преодолен в устройстве на поверхностных акустических волнах, принятом за прототип (Uemura Т, Fudjii S., Itakura К. at oth. Development of Low Loss and High Q Value Diamond Surface Acoustic Wave devices Consisting of Fine-Garnet Diamond. SEI Technical Rev. 2002, №4, p.41), состоящем из кремниевой подложки и последовательно расположенных на подложке слоев алмаза и пьезоэлектрика, причем на внешней поверхности пьезоэлектрика сформированы две группы гребенчатых встречно-штыревых преобразователей (ВШП), выполненных из алюминия.

В этой конструкции использовано то обстоятельство, что алмаз обладает самой большой скоростью звука по сравнению с любыми другими твердыми телами. В данном устройстве ПАВ, возникшая в пьезоэлектрике, возбуждает акустическую волну в алмазе, перемещающуюся со скоростью, превышающей скорость ПАВ в пьезоэлектрике. Таким образом, сокращается время перемещения акустической волны от одной группы ВШП к другой и соответственно возрастает рабочая частота устройства.

Недостаток принятой за прототип конструкции обусловлен тем, что слой алмаза, сформированный на любой (в данном случае кремниевой) подложке, кроме монокристаллического алмаза, с неизбежностью является поликристаллическим. Это приводит к затуханию ПАВ на границах кристалла, что уменьшает рабочую частоту.

Предлагаемое изобретение решает задачу создания устройства ПАВ, обладающего повышенной рабочей частотой и пониженными потерями сигнала.

Техническим результатом решения этой задачи является повышение рабочей частоты устройства на ПАВ вплоть до 10 ГГц с предельно малыми потерями сигнала.

Поставленная задача достигается в устройстве на поверхностных акустических волнах, состоящем из подложки, слоя пьезоэлектрика и двух групп гребенчатых встречно-штыревых преобразователей, новизна которого заключается в том, что подложка выполнена из монокристаллического алмаза, причем слой пьезоэлектрика расположен непосредственно на подложке, а встречно-штыревые преобразователи расположены в поверхностной области подложки, контактирующей с пьезоэлектрическим слоем, и выполнены из графита.

Таким образом, в устройстве реализуется максимально возможная скорость перемещения ПАВ по твердому телу, т.е. обеспечивается достижение максимально возможной рабочей частоты с точки зрения физики процесса.

Уменьшение потерь сигнала в предлагаемом устройстве достигается формированием ВШП на основе хорошо проводящей электрический ток формы углерода, а именно графита. Для формирования ВШП используется возможность графитизации кристаллов алмаза методом ионной имплантации [Gippius A., Khmelnitsky R., Dravin V. Diamond - graphite transformation by light ions implantation. Diamond and Related Materials, 2003, №12, р.538]. Благодаря этому при изготовлении ВШП вообще не используются металлы. Такой ВШП характеризуется предельно малой массой по сравнению с любыми металлическим ВШП той же геометрии и, соответственно, предельно низким уровнем потерь сигнала, связанных с конструкцией ВШП.

На Фиг.1 представлено поперечное сечение устройства на поверхностных акустических волнах.

На Фиг.2 представлено расположение элементов ВШП 1 на поверхности алмазной подложки 2.

В таблице 1 приведены данные, характеризующие рабочую частоту потери сигнала предлагаемого устройства и устройства, изготовленного по прототипу.

Устройство состоит из подложки из монокристаллического алмаза 1, расположенного непосредственно на ней слоя пьезоэлектрика 2 и встречно-штыревых преобразователей 3 и 4, расположенных в поверхностной области алмазной подложки 1, контактирующей с пьезоэлектрическим слоем 2, и выполненных из графита.

Устройство на ПАВ функционирует следующим образом. Группа ВШП 3 воспринимает внешний сигнал в виде электромагнитной волны, благодаря чему в слое пьезоэлектрика 2 возбуждаются ПАВ. ПАВ в свою очередь возбуждают поверхностную акустическую волну в алмазной подложке 1, которая распространяется к группе ВШП 4. Далее она возбуждает ПАВ области пьезоэлектрика 2, прилегающей к группе ВШП 4, и формирует выходной электромагнитный сигнал.

Приведенные ниже примеры подтверждают, но не ограничивают использование изобретения.

Было изготовлено устройство на ПАВ, содержащее подложку монокристаллического алмаза (удельное сопротивление 1012 Ом·см, толщина 0,3 мм), у поверхности которой были сформированы с использованием только стандартных процессов микроэлектронного производства графитовые ВШП методом имплантации ионов гелия (доза 3,4·1016 см-2, температура отжига 900°С). При проведении ионной имплантации целесообразно использовать легкие ионы (например, ионы гелия) с тем, чтобы минимизировать образование сложных радиационных дефектов в алмазе. Имплантация должна обеспечивать образование графитизированных областей. Соответствующая доза ионов зависит от их массы (например, 3·1016 см-2 и 8·1016 см-2 для ионов гелия и дейтерия соответственно). Значение энергии ионов, обеспечивающее расположение графитизированного слоя от поверхности вглубь алмаза, рассчитывается по стандартным таблицам. Отжиг радиационных дефектов проводится в стандартных условиях для алмаза, подвергнутого имплантации (800-1100°С, вакуум).

На поверхности подложки был размещен слой пьезоэлектрика ZnO (толщина 0,3 мкм).

Контрольный образец, сформированный в соответствии с прототипом, был получен осаждением пленки поликристаллического алмаза (размеры кристаллитов от 0,3 до 0,6 мкм, толщина 0,5 мкм) на кремниевой подложке (толщина 0,3 мм). На поверхности пленки поликристаллического алмаза был сформирован слой ZnO толщиной 0,3 мкм, на внешней поверхности которого сформированы ВШП из алюминия. Геометрия ВШП в обоих образцах была идентичной.

Измерения рабочей частоты и потерь сигнала предлагаемого устройства и устройства, изготовленного по прототипу, приведены в таблице.

Как видно из приведенной таблицы, рабочая частота устройства по изобретению была выше, чем у контрольного устройства, а потери сигнала ниже.

Прибор на поверхностных акустических волнах Объект Структура подложки Рабочая частота, ГГц Потери, дБ 1 по изобретению Монокристаллический алмаз 2,44 4,8 2 контрольный по прототипу Поликристаллический алмаз на кремнии 2,32 5,4

Похожие патенты RU2383969C1

название год авторы номер документа
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ГИРОСКОПА НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 2007
  • Богословский Владимир Сергеевич
RU2335739C1
ГИРОСКОП НА ПОВЕРНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 2006
  • Богословский Владимир Сергеевич
RU2329466C1
РЕЗОНАНСНЫЙ ГИРОСКОП НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ С РАЗДЕЛЕНИЕМ ЧАСТОТ 2007
  • Богословский Владимир Сергеевич
RU2347189C1
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ РЕЗОНАНСНОГО ГИРОСКОПА НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 2007
  • Богословский Владимир Сергеевич
RU2335738C1
ГИРОСКОП НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 2006
  • Анцев Георгий Владимирович
  • Богословский Сергей Владимирович
  • Захаревич Анатолий Павлович
  • Новиков Владимир Васильевич
  • Сапожников Геннадий Анатольевич
  • Шубарев Валерий Антонович
RU2310165C1
ЭЛЕКТРОННЫЙ ГИРОСКОП 2007
  • Богословский Владимир Сергеевич
RU2357212C1
ПРЕОБРАЗОВАТЕЛЬ ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛН (ВАРИАНТЫ) 2006
  • Греков Анатолий Иванович
RU2317635C1
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ ДЛЯ ИЗМЕРЕНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ 2011
  • Богословский Сергей Владимирович
  • Сапожников Геннадий Анатольевич
  • Анцев Иван Георгиевич
  • Жежерин Александр Ростиславович
  • Смирнов Юрий Геннадьевич
  • Ермаков Павел Игоревич
RU2457450C1
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ РЕЗОНАНСНОГО ГИРОСКОПА НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ С ДРАЙВЕРОМ 2007
  • Богословский Владимир Сергеевич
RU2345446C1
ПАССИВНАЯ ИДЕНТИФИКАЦИОННАЯ МЕТКА НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ С РЕЗОНАТОРОМ 2007
  • Богословский Владимир Сергеевич
RU2350982C2

Иллюстрации к изобретению RU 2 383 969 C1

Реферат патента 2010 года ПРИБОР НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ

Изобретение относится к электронным приборам на основе поверхностных акустических волн. Технический результат: повышение рабочей частоты и уменьшение потерь сигнала. Сущность: устройство состоит из подложки, слоя пьезоэлектрика и двух групп гребенчатых встречно-штыревых преобразователей. Подложка выполнена из монокристаллического алмаза. Слой пьезоэлектрика расположен непосредственно на подложке. Встречно-штыревые преобразователи расположены в поверхностной области подложки, контактирующей с пьезоэлектрическим слоем, и выполнены из графита. 1 табл., 2 ил.

Формула изобретения RU 2 383 969 C1

Устройство на поверхностных акустических волнах, состоящее из подложки, слоя пьезоэлектрика и двух групп гребенчатых встречно-штыревых преобразователей, отличающееся тем, что подложка выполнена из монокристаллического алмаза, причем слой пьезоэлектрика расположен непосредственно на подложке, а встречно-штыревые преобразователи расположены в поверхностной области подложки, контактирующей с пьезоэлектрическим слоем, и выполнены из графита.

Документы, цитированные в отчете о поиске Патент 2010 года RU2383969C1

JP 9223943 А, 26.08.1997
JP 7321596 А, 08.12.1995
JP 2003112995 А, 18.04.2003
ВЫСОКОЧАСТОТНОЕ УСТРОЙСТВО НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ 1996
  • Науменко Наталья Федоровна
  • Орлов Виктор Семенович
RU2099857C1

RU 2 383 969 C1

Авторы

Бланк Владимир Давыдович

Карпушин Михаил Петрович

Мордкович Виктор Наумович

Терентьев Сергей Александрович

Даты

2010-03-10Публикация

2008-10-16Подача