СПОСОБ ТЕПЛОВОГО КАРОТАЖА СКВАЖИН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2010 года по МПК E21B47/06 

Описание патента на изобретение RU2386028C1

Изобретение относится к способам и устройствам для геофизических исследований необсаженных скважин и может найти применение для определения тепловых свойств горных пород.

Данные о тепловых свойствах горных пород (теплопроводности, температуропроводности и теплоемкости) необходимы для расчета термоупругих напряжений в горных породах, а также для математического моделирования и оптимизации процессов добычи нефти и газа, особенно при использовании термических методов добычи тяжелых (высоковязких) нефтей.

Тепловые свойства горных пород обычно определяют в лабораторных условиях на образцах керна пород. Техника таких измерений достаточно хорошо отработана, тепловые свойства керна измеряются в лаборатории с достаточно высокой точностью, однако измеренные на образцах керна значения могут существенно отличаться от тепловых свойств горных пород in-situ. Можно указать несколько причин отличия этих значений: растрескивание керна в процессе бурения и последующего хранения, отличие пластовых Р/Т условий от лабораторных, кроме того, в лабораторных условиях сложно воспроизвести насыщение пород пластовыми флюидами. Вполне очевидно, что наряду с лабораторными методами изучения тепловых свойств горных пород надо иметь возможность определять их тепловые свойства in-situ, однако до настоящего времени не существует методов и каротажных приборов, которые имели бы достаточно высокую точность, надежность, приемлемое время измерения и могли бы использоваться в полевых условиях.

К настоящему времени предложен ряд методов определения тепловых свойств горных пород in-situ с использованием теплового каротажа. Так, в работе (Дахнов В.Н., Дьяконов Д.И. Термические исследования скважин. Москва, 1952, 251 с.) для этой цели предложено использовать тепловое возмущение пород, вызванное бурением или циркуляцией бурового раствора в скважине. После прекращения циркуляции температура пород (и измеренная в скважине температура) возвращается к своим первоначальным значениям. Скорость восстановления температуры на каждой глубине зависит от тепловых свойств пород, залегающих на этой глубине, и обработка кривых восстановления температуры может быть использована для определения тепловых свойств пород. К недостаткам этого способа следует отнести сильную зависимость измеренной в скважине температуры от радиуса скважины, движения жидкости в стволе скважины и положения датчика температуры в скважине. Из-за сложности количественной интерпретации кривых восстановления температуры этот способ до настоящего времени не был реализован на практике.

Большинство описанных в литературе способов определения тепловых свойств пород in-situ базируются на методе линейного источника. В случае протяженного (длина источника в 20-30 раз превышает радиус скважины) источника с постоянной мощностью тепловыделения скорость увеличения температуры источника обратно пропорциональна теплопроводности окружающих пород (см., например, Huenges, Е., Burhardt, Н., and Erbas, К., Thermal conductivity profile of the KTB pilot corehole. Scientific Drilling, 1, 1990, 224-230). К недостаткам этого способа следует отнести большую продолжительность измерений (12 часов и более), необходимую для определения теплопроводности пород на заданной глубине, влияние на результаты измерений свободной тепловой конвекции скважинного флюида, которая вызывается нагревом источника во время измерений, а также необходимость подвода к источнику значительной энергии.

Известны модификации метода линейного источника, использующие относительно небольшой нагреватель, который прижимается к стенке скважины и изолируется от скважинного флюида материалом, имеющим малую теплопроводность (Kiyohashi Н., Okumura К., Sakaguchi К., and Matsuki К., 2000. Development of direct measurement method for thermophysical properties of reservoir rocks in situ by well logging, Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan, May 28 - June 10, 2000).

Этот способ позволяет уменьшить время измерений, однако он требует, чтобы стенки скважины были достаточно гладкие, кроме того, измерительный прибор достаточно сложен и имеет подвижные элементы.

В патенте США № 3892128 описан способ теплового каротажа скважин с помощью подвижного каротажного прибора. В передней (по ходу движения) части цилиндрического зонда находится нагреватель, который увеличивает температуру скважинного флюида, а в задней части зонда - датчик температуры, измеряющий температуру флюида в кольцевом зазоре между зондом и стенками скважины. Эта температура зависит от величины теплового потока между флюидом и горной породой, который, в свою очередь, зависит от тепловых свойств породы. Основным недостатком этого способа является очень маленькая глубина зондирования - малая толщина слоя пород, тепловые свойства которых влияют на результаты измерений, необходимость подвода к зонду значительной мощности, а также сильная зависимость результатов измерений от радиуса скважины.

Техническим результатом настоящего изобретения является сокращение времени измерения, отсутствие в зонде подвижных элементов, минимизация влияния на результаты измерений конвеции скважинного флюида, вызванной процессом измерения, возможность одновременного измерения тепловых свойств пород в 3-5 точках в интервале глубин протяженностью несколько метров

Этот технический результат достигается тем, что в соответствии с предлагаемым способом теплового каротажа скважин в необсаженной скважине размещают цилиндрический зонд, снабженный датчиками температуры, каждый из которых расположен в одном из круговых секторов зонда, выполненных из высокотеплопроводного материала и теплоизолированных друг от друга, осуществляют регистрацию температуры зонда датчиками, после выравнивания показаний всех датчиков температуры осуществляют перемещение зонда по стволу скважины до заданной глубины, останавливают зонд и регистрируют кривые восстановления температуры для каждого сектора в течение 10-40 минут, по скорости изменения температуры выявляют кривые восстановления температуры, соответствующие сектору с максимальной скоростью изменения температуры, и противоположному ему сектору с минимальной скоростью изменения температуры, и судят о тепловых свойствах горных пород по величине отношения разности температур между указанными противоположными секторами к изменению температуры датчика, имеющего минимальную скорость изменения температуры, с момента остановки зонда.

Для проведения последующих измерений на другом горизонте зонд предварительно выдерживают в скважине на расстоянии не менее 100 м от горизонта, на котором должны быть измерены тепловые свойства горных пород, в течение времени, достаточного для выравнивания показаний всех датчиков температуры зонда.

Перемещение зонда вдоль скважины осуществляют со скоростью не менее средней скорости каротажа для обеспечения необходимой разности температур между температурой зонда и температурой формации на той глубине, где находится зонд. При использовании доступных в настоящее время датчиков температуры, имеющих чувствительность около 0.001 К необходима разность температур около 1 К. При использовании более чувствительных датчиков необходимая разность температур и расстояние, на которое должен перемещаться зонд до проведения измерений, могут быть уменьшены.

Технический результат достигается также тем, что устройство для теплового каротажа скважин выполнено в виде подвижного цилиндрического зонда, содержащего не менее четырех круговых секторов, выполненных из высокотеплопроводного материала и теплоизолированных друг от друга, в каждом из которых установлен датчик температуры.

Зонд может содержать несколько теплоизолированных измерительных секций, расположенных по его высоте, что позволит одновременно получить данные по тепловым свойства для нескольких слоев горных пород.

Изобретение поясняется чертежами, где на Фиг.1 показана схема зонда и его расположение в скважине во время проведения измерений, на Фиг.2 показано изменение температуры зонда при его движении по скважине вниз, на Фиг.3 приведены результаты численного моделирования кривых восстановления температуры для секторов с максимальной и минимальной скоростями изменения температуры, а на Фиг.4 - изменение безразмерного параметра Td со временем.

Как показано на Фиг.1, идентичные чувствительные датчики температуры 4-7 имплантируют в металлические круговые сектора зонда 1 (количество секторов не менее 4), которые должны быть теплоизолированы друг от друга, например посредством каркаса 8 зонда. До начала перемещения зонд 1 находится на поверхности вне скважины или, для осуществления повторных измерений, выдерживается в скважине на расстоянии не менее 100 м от горизонта, на котором должны быть измерены тепловые свойства горных пород, в течение времени, достаточного для выравнивания показаний всех датчиков температуры зонда, то есть для того, чтобы все датчики температуры 4-7 зонда 1 регистрировали одинаковую температуру. Зонд перемещают на заданную глубину со скоростью не менее средней скорости каротажа (0,3 м/сек) для обеспечения достаточной для проведения измерений (~1 К) разности температур между температурой зонда и температурой формации 3 на той глубине, где находится зонд. При достижении заданной глубины зонд останавливают и в течение 10-40 минут регистрируют кривые восстановления температуры всеми датчиками 4-7, расположенными в круговых секторах зонда 1. В скважине зонд 1 касается стенок скважины преимущественно одним из секторов, а между противоположным сектором и породой находится наиболее толстый слой скважинного флюида 2 (Фиг.1). По скорости изменения температуры выделяют кривые восстановления температуры, соответствующие сектору, касающемуся стенок скважины и содержащему датчик 4, с максимальной скоростью изменения температуры и противоположному сектору, находящемуся на наибольшем расстоянии от стенок скважины и содержащему датчик 6, с минимальной скоростью изменения температуры. Для определения тепловых свойств горных пород используют безразмерный параметр Td - отношение разности температур (модуль разности Т12) между указанными противоположными секторами с максимальной и минимальной скоростями изменения температуры к изменению температуры датчика 6 (модуль разности Т20), имеющего минимальную скорость изменения температуры, с момента остановки зонда, где Т0 - температура датчиков в мотент остановки зонда. Данный параметр Td существенно зависит от свойств пород и предлагается для количественного определения ТС пород в результате численного моделирования или в результате сравнения с эталонными экспериментами.

После проведения измерений на заданной глубине может быть проведено измерение тепловых свойств пород на другом горизонте. Для этого надо переместить зонд 1 в скважине на горизонт, находящийся на расстоянии не менее 100 м от горизонта, где должны быть измерены тепловые свойства пород, и зонд должен быть зафиксирован на этом горизонте в течение времени, достаточного для того, что бы все датчики температуры зонда регистрировали одинаковую температуру. Необходимая скорость перемещения зонда и величина перемещения зависят от чувствительности датчиков температуры. Приведенные выше параметры достаточны при использовании датчиков температуры с чувствительностью около 0,001 К. При использовании более чувствительных датчиков необходимая разность температур и величина перемещения могут быть уменьшены.

Зонд может содержать несколько теплоизолированных измерительных секций длинной 0,5-0,7 м каждая, что позволит одновременно получить данные по тепловым свойствам для нескольких слоев горных пород.

Первоначальная разность температур Tf0 между зондом (Т0) и горным массивом (Tf), тепловые свойства которого измеряются, обеспечивается существованием геотермического градиента и тем, что перед измерением зонд перемещают по скважине (вверх или вниз) до заданной глубины. При тепловом каротаже в соответствии с предлагаемым способом используется тот факт, что все скважины имеют наклон и остановленный на заданной глубине зонд одним из секторов (с датчиком 4) должен касаться стенки скважины, при этом противоположный сектор (с датчиком 6) находится на наибольшем расстоянии от стенок скважины. Поскольку пространство между зондом и стенками скважины заполнено скважинным флюидом, теплопроводность которого обычно в 2-3 раза меньше теплопроводности пород, легко выделить эти сектора, так как температура первого (T1) изменяется с наибольшей скоростью, а температура последнего (Т2) - с наименьшей.

Для определения тепловых свойств пород предлагается использовать первые 10-40 минут после остановки зонда, так как в течение этого времени температура Т2 датчика 6, который отделен от стенок скважины слоем флюида 2, практически не зависит от тепловых свойств пород.

Во время движения зонда вдоль скважины разность ΔТ0 между температурой поверхности зонда 1 и температурой пород на той глубине, где находится зонд, достигает величины (Фиг.2):

ΔТ0≈Г·V·τ,

где V - скрость движения зонда, Г - геотермический градиент, ,

ρTcT - объемная теплоемкость материала, из которого изготовлен зонд, rT - радиус зонда, rw - радиус скважины, λm - теплопроводность скважинного флюида, Nu - число Нуссельта, характеризующее теплопередачу между зондом и жидкостью, находящейся в кольцевом зазоре между зондом и стенками скважины. Для типичных параметров задачи (V~0,3 м/с, Δу>50 м) величина ΔТ0 составляет 1÷2 К. После остановки зонда на заданной глубине значения температуры, измеренные во всех секторах, начинают приближаться к температуре пород на той глубине, где находится зонд. Линия 2 на Фиг.2 соответствует температуре горного массива, а линия 3 - температуре спускаемого зонда 1.

На Фиг.3 приведены результаты расчета, полученные при следующих параметрах задачи: rT=0,08 м, rw=0,1 м, λf=2,5 В/м/К или λf=3,5 В/м/К, λm=0,6 В/м/К, λT=50 В/м/К, λcore=0,1 В/м/К, ΔТ0=1 К. Кривые 1 и 2 соответствуют температуре сектора с датчиком 4 при теплопроводности пород 3,5 В/м/К и 2,5 В/м/К соответственно, а кривая 3 соответствует температуре сектора с датчиком 6, которая практически не зависит от тепловых свойств пород в течение рассматриваемых 20 мин.

На Фиг.4 кривыми 1 приведено изменение со временем безразмерно параметра

,

который может быть использован для определения тепловых свойств пород. Из рисунка видно, что в течение первых 20 мин 30% изменению теплопроводности пород соответствует приблизительно 30% изменение Td. Кривые 2 на Фиг.4 соответствуют зонду, повернутому на 30° по отношению к симметричному касанию секции с датчиком 4 зонда (Фиг.1) стенок скважины. Из рисунка видно, что абсолютная величина параметра Td в этом случае оказывается несколько ниже, однако ~30% изменение Td при изменении теплопроводности пород сохраняется. Кривые 3 были получены при симметричном расположении зонда, но при наличии 3 мм слоя глины по стенкам скважины. В отличие от «чистых» стенок скважины влияние тепловых свойств пород вначале невелико и увеличивается в течение ~10 мин, но в интервале 10-20 мин оно превышает 30%. Толстые кривые на Фиг.4 соответствуют теплопроводности породы 3,5 Вт/м/К, тонкие - 2,5 Вт/м/К.

Предлагаемые способ и устройство теплового каротажа имеют следующие преимущества: не требуется подвода значительной энергии к измерительному зонду; влияние тепловой конвекции скважинного флюида, вызванной измерением тепловых свойств, отсутствует или минимально; продолжительность измерений на заданной глубине относительно невелика (10-40 мин); за одно измерение можно получить информацию для нескольких слоев горных пород в интервале глубин 3-5 м.

Похожие патенты RU2386028C1

название год авторы номер документа
СКВАЖИННЫЙ ЗОНД ДЛЯ ИЗМЕРЕНИЯ ТЕПЛОВЫХ СВОЙСТВ ГОРНЫХ ПОРОД И ПЛОТНОСТИ ГЕОТЕРМАЛЬНЫХ ТЕПЛОВЫХ ПОТОКОВ 2007
  • Гуров Петр Николаевич
RU2406081C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕПЛОПРОВОДНОСТИ И ОБЪЕМНОЙ ТЕПЛОЕМКОСТИ ПЛАСТОВ В СКВАЖИНЕ 2001
  • Гуров П.Н.
RU2190209C1
СПОСОБ ИССЛЕДОВАНИЯ КОЛЛЕКТОРОВ НЕФТИ И ГАЗА 1993
  • Кучурин Е.С.
RU2113723C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНЫХ ФАЗОВЫХ ПРОНИЦАЕМОСТЕЙ ПЛАСТА 2009
  • Чарара Марван
  • Паршин Антон Владимирович
  • Дышлюк Евгений Николаевич
  • Зозуля Олег Михайлович
  • Сафонов Сергей Сергеевич
RU2414595C1
Способ с.м.вдовина акустического каротажа 1978
  • Вдовин Сергей Михайлович
  • Вдовина Ольга Алексеевна
SU744411A1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ТЕПЛОПРОВОДНОСТИ ГОРНЫХ ПОРОД В СКВАЖИНЕ 2013
  • Шако Валерий Васильевич
  • Пименов Вячеслав Павлович
  • Паршин Антон Владимирович
RU2539084C1
СПОСОБ ОПРЕДЕЛЕНИЯ СВОЙСТВ ПРОДУКТИВНОГО ПЛАСТА 2011
  • Паршин Антон Владимирович
  • Дышлюк Евгений Николаевич
RU2468198C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ТЕПЛОПРОВОДНОСТИ ГОРНЫХ ПОРОД В СКВАЖИНЕ 2017
  • Шако Валерий Васильевич
  • Пименов Вячеслав Павлович
  • Ванг Ксивоксин
  • Че Сун Сеонг
  • Канно Такаюки
RU2658856C1
Устройство для определения тепловых параметров горных пород в скважине 1980
  • Бевзюк Михаил Иванович
  • Геращенко Олег Аркадьевич
  • Грищенко Татьяна Георгиевна
  • Кутас Роман Иванович
  • Михайлюк Станислав Федорович
SU922605A1
ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ФЛЮИДА ПО ДАННЫМ АКУСТИЧЕСКОГО КАРОТАЖА 2008
  • Хэуторн Эндрю
  • Джонстон Лучиан Кинг
  • Джонсон Дэвид Линтон
  • Эндо Такеси
  • Валеро Энри-Пьер
RU2477369C2

Иллюстрации к изобретению RU 2 386 028 C1

Реферат патента 2010 года СПОСОБ ТЕПЛОВОГО КАРОТАЖА СКВАЖИН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к способам и устройствам для геофизических исследований необсаженных скважин и предназначено для определения тепловых свойств горных пород. Техническим результатом изобретения является сокращение времени измерения, отсутствие в зонде подвижных элементов, минимизация влияния на результаты измерений конвекции скважинного флюида, вызванной процессом измерения, возможность одновременного измерения тепловых свойств пород в 3-5 точках в интервале глубин протяженностью несколько метров. В необсаженной скважине размещают цилиндрический зонд, снабженный датчиками температуры, каждый из которых расположен в одном из круговых секторов зонда, выполненных из высокотеплопроводного материала и теплоизолированных друг от друга. Осуществляют регистрацию температуры зонда датчиками. После выравнивания показаний всех датчиков температуры осуществляют перемещение зонда по стволу скважины до заданной глубины. Останавливают зонд и регистрируют кривые восстановления температуры для каждого сектора в течение 10-40 минут. По скорости изменения температуры выявляют кривые восстановления температуры, соответствующие сектору с максимальной скоростью изменения температуры, и противоположному ему сектору с минимальной скоростью изменения температуры. О тепловых свойствах горных пород судят по величине отношения разности температур между указанными противоположными секторами к изменению температуры датчика, имеющего минимальную скорость изменения температуры, с момента остановки зонда. 2 н. и 3 з.п. ф-лы. 4 ил.

Формула изобретения RU 2 386 028 C1

1. Способ теплового каротажа скважин, включающий размещение в необсаженной скважине цилиндрического зонда, снабженного датчиками температуры, и последующее его перемещение по стволу скважины, отличающийся тем, что каждый из датчиков расположен в одном из круговых секторов зонда, выполненных из высокотеплопроводного материала и теплоизолированных друг от друга, перед перемещением зонда осуществляют регистрацию его температуры указанными датчиками температуры, перемещение зонда по стволу скважины до заданной глубины осуществляют после выравнивания показаний всех датчиков температуры, останавливают зонд и регистрируют кривые восстановления температуры для каждого сектора в течение 10-40 мин, по скорости изменения температуры выявляют кривые восстановления температуры, соответствующие сектору с максимальной скоростью изменения температуры и противоположному ему сектору с минимальной скоростью изменения температуры, и судят о тепловых свойствах горных пород по величине отношения разности температур между указанными противоположными секторами к изменению температуры датчика, имеющего минимальную скорость изменения температуры, с момента остановки зонда до окончания регистрации кривых восстановления температуры.

2. Способ теплового каротажа скважин по п.1, отличающийся тем, что при использовании датчиков температуры с чувствительностью около 0.001 К для проведения последующих измерений на другом горизонте зонд предварительно выдерживают в скважине на расстоянии не менее 100 м от горизонта, на котором должны быть измерены тепловые свойства горных пород, в течение времени, достаточного для выравнивания показаний всех датчиков температуры зонда.

3. Способ теплового каротажа скважин по п.1, отличающийся тем, что при использовании датчиков температуры с чувствительностью около 0.001 К перемещение зонда вдоль скважины осуществляют со скоростью, достаточной для обеспечения разности температур между зондом и формацией около 1К.

4. Устройство для теплового каротажа скважин, выполненное в виде подвижного цилиндрического зонда и снабженное датчиками температуры, отличающееся тем, что зонд содержит не менее четырех круговых секторов, выполненных из высокотеплопроводного материала и теплоизолированных друг от друга, в каждом из которых установлен датчик температуры.

5. Устройство для теплового каротажа скважин по п.4, отличающееся тем, что зонд содержит несколько теплоизолированных измерительных секций, расположенных по его высоте, каждая из которых содержит круговые сектора, изготовленные из высокотеплопроводного материала, с датчиками температуры.

Документы, цитированные в отчете о поиске Патент 2010 года RU2386028C1

US 3892128 А, 01.07.1975
Устройство для измерения температуры грунта в скважине 1981
  • Солодовников Андрей Борисович
SU976042A1
Скважинный термоанемометр 1972
  • Багринцев Михаил Иванович
  • Хортов Владимир Георгиевич
  • Омесь Сергей Павлович
  • Михайлин Альберт Степанович
  • Рыков Петр Васильевич
  • Чуйков Алексей Федорович
  • Дурнобдеев Анатолий Алексеевич
SU440484A1
Скважинный снаряд для термокаротажа 1976
  • Смирнов Гавриил Сергеевич
  • Буров Анатолий Николаевич
  • Богомолов Олег Васильевич
SU741222A1
Устройство для теплового каротажа 1986
  • Ивашура Александр Игнатьевич
  • Попов Юрий Анатольевич
  • Семенов Виктор Гаврилович
SU1437492A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕПЛОПРОВОДНОСТИ И ОБЪЕМНОЙ ТЕПЛОЕМКОСТИ ПЛАСТОВ В СКВАЖИНЕ 2001
  • Гуров П.Н.
RU2190209C1
УСТРОЙСТВО ДЛЯ ТЕРМИЧЕСКОГО КАРОТАЖА СКВАЖИН 1996
  • Старостин Виктор Андреевич[Ua]
  • Хоминец Зиновий Дмитриевич[Ua]
  • Косаняк Иван Николаевич[Ru]
RU2096772C1

RU 2 386 028 C1

Авторы

Пименов Вячеслав Павлович

Даты

2010-04-10Публикация

2008-11-28Подача