МНОГОФАЗНЫЙ МОСТОВОЙ ПРЕОБРАЗОВАТЕЛЬ ПЕРЕМЕННОГО ТОКА В ПОСТОЯННЫЙ Российский патент 2010 года по МПК H02M7/10 

Описание патента на изобретение RU2387070C1

Изобретение относится к электротехнике и силовой преобразовательной технике и может быть использовано в качестве преобразователя переменного тока в постоянный для питания потребителей с повышенными требованиями к качеству выпрямленного напряжения и электромагнитной совместимости.

Известен многофазный мостовой преобразователь переменного тока в постоянный, содержащий трансформаторный источник шестифазной системы напряжений, сформированный вторичными фазными обмотками, соединенными в правильный шестиугольник (Шляпошников Б.М. Игнитронные выпрямители. - М.: Трансжелдориздат. 1947. - 735 с.), а также известны преобразователи с источниками шестифазных симметричных систем напряжений, формируемыми вторичными обмотками разомкнутого и комбинированного типов (Палванов В.Г. Шестифазные мостовые преобразователи. // Электричество. - 1974. - №6. - С.79-81). При n последовательно соединенных по постоянному току таких преобразователей, первичные обмотки трансформаторов которых обеспечивают фазовые сдвиги эл. град. между шестифазными системами вторичных напряжений, происходит увеличение фазности преобразования до значения 6n. Так, в 6n-фазном преобразователе для обеспечения р=12-пульсного (n=2, р=12) выпрямления потребуется два трансформатора, формирующих две шестифазные системы напряжений, и два шестифазных вентильных моста; для 24-пульсного выпрямления, соответственно, четыре трансформатора и четыре шестифазных вентильных моста; для 36-пульсного выпрямления шесть трансформаторов и шесть шестифазных вентильных мостов.

Недостатком известных преобразователей является низкая кратность частоты пульсаций выпрямленного напряжения, большие массогабаритные показатели и необходимость применения для увеличения кратности частоты пульсаций выпрямленного напряжения большого количества трансформаторов и вентильных мостов.

Известен многофазный мостовой преобразователь переменного тока в постоянный, содержащий трансформаторный источник двенадцатифазной симметричной системы вторичных напряжений, выполненный на вторичных фазных обмотках, соединенных в правильный шестиугольник, от двух промежуточных отпаек каждой из которых сделано по два фазных вывода, и два параллельно включенных шестифазных вентильных моста, соединенных с выводами от отпаек обмоток. Между совмещенными полюсами мостов формируется 12-пульсное выпрямленное напряжение (1. Шляпошников Б.М. Игнитронные выпрямители. - М.: Трансжелдориздат. 1947. - 735 с.2. А.с. 1035755 СССР. Мостовой преобразователь переменных напряжений в постоянное / A.M.Репин. Бюл. №30, 1983).

Недостатком данного преобразователя является необходимость применения вентильных плеч мостов в количестве, превышающем кратность частоты пульсаций выпрямленного напряжения в два раза.

Известен многофазный мостовой преобразователь переменного тока в постоянный с 24-фазным режимом преобразования, содержащий два трансформаторных источника, каждый из которых обеспечивает получение шестифазной веерной системы напряжений, формируемой вторичными фазными обмотками, соединенными в полуправильный шестиугольник. Вершины каждого из двух шестиугольников имеют фазные выводы, подключенные к входам переменного тока двух трехфазных вентильных мостов, соединенных одноименными полюсами параллельно через два уравнительных реактора (по одному на каждую пару одноименных полюсов), причем к входам любого из мостов подключены те вершины шестиугольника, которые принадлежат фазам одной из симметричных трехфазных систем ЭДС, составляющих шестифазную веерную систему, при этом пары вентильных мостов разнополярными средними точками обмоток уравнительных реакторов соединены между собой согласно и последовательно с нагрузкой (Баудиш К. Передача энергии постоянным током высокого напряжения. - М. - Л.: Госэнергоиздат. 1958. - 368 с.).

Недостатком данного преобразователя является необходимость применения четырех уравнительных реакторов, что ведет к снижению КПД и увеличению массогабаритных показателей.

Наиболее близким к изобретению, принятым за прототип, является многофазный мостовой преобразователь переменного тока в постоянный, содержащий преобразовательную структуру, включающую шестифазный вентильный мост и трехфазный трансформатор, вторичные фазные обмотки которого образуют источник шестифазной несимметричной системы напряжений, причем эти напряжения при выборе в качестве базовой схемы построения обмоток фигуры шестифазной несимметричной звезды смещены по фазе на 60 эл. град. и чередуются по амплитудам в соотношении 1:0,732, а фазные выводы источника подключены к шестифазному вентильному мосту, на выходе которого формируется каноническое 12-пульсное выпрямленное напряжение (а.с. 540334 СССР. Преобразователь переменного тока в постоянный / А.Г.Аслан-заде, Р.Э.Мамедов. Бюл. №47, 1976). При выполнении на его основе 12n-фазного преобразователя для 12-пульсного выпрямления потребуется один исходный трансформатор с источником несимметричной шестифазной системы напряжений и один исходный шестифазный вентильный мост; для 24-пульсного выпрямления - два трансформатора и два моста; для 36-пульсного выпрямления - три трансформатора и три моста, а требуемые фазовые сдвиги между системами равны

Относительным недостатком данного преобразователя является то, что при агрегировании на его основе преобразователей, имеющих большее число выходных фаз, для изготовления вторичных обмоток применяется только одно фиксированное соотношение чисел витков вторичных фазных обмоток, используемое для всего диапазона мощностей и(или) выпрямленных напряжений. Так, например, для обмоток, собранных в одинаковые полуправильные шестиугольники с фазными выводами от средних точек сторон, это соотношение всегда равно 1:0,366, а для обмоток, собранных в шестифазную несимметричную звезду, - 1:0,732. Ограниченность выбора соотношений сужает диапазон применения (особенно при больших мощностях и(или) при относительно невысоких выпрямленных напряжениях) из-за снижения качества преобразования, обусловленного возрастанием влияния конструктивной несимметрии вторичных обмоток. Преобразователь с полуправильными шестиугольниками как преобразователь с лучшими показателями по типовой мощности трансформаторов и отсутствием вынужденных потоков намагничивания (в отличие от преобразователя с шестифазными звездами) имеет собственный недостаток, связанный с достаточно большим различием в числах витков вторичных фазных обмоток, что усложняет обеспечение равенства электромагнитных условий при их размещении на стержне магнитопровода.

В соответствии с этим данный преобразователь имеет качество преобразования, присущее преобразователям с данной фазностью, а повышение фазности преобразования методом агрегирования нескольких подобных преобразователей зачастую сопряжено со снижением ожидаемого уровня качества преобразования из-за влияния конструктивной несимметрии вторичных фазных обмоток в определенных поддиапазонах значений мощностей и(или) выпрямленных напряжений.

Задача изобретения: создание многофазного мостового преобразователя переменного тока в постоянный с более высоким качеством преобразования.

Указанная задача достигается тем, что многофазный мостовой преобразователь переменного тока в постоянный содержит преобразовательную структуру, включающую шестифазный вентильный мост и трехфазный трансформатор, вторичные фазные обмотки которого соединены по схеме, образующей источник несимметричной шестифазной системы напряжений, два значения которых чередуются по величине от фазы к фазе через угол 60 эл. град., а фазные выводы источника подключены к входам переменного тока шестифазного вентильного моста, причем преобразователь снабжен дополнительными преобразовательными структурами, при этом образовано n преобразовательных структур, вторичные фазные обмотки трансформаторов которых соединены по одинаковым схемам и для всех структур установлено отношение между величинами чередующихся в несимметричных шестифазных системах напряжений смежных фаз, определяемое, относительно базовых топологических размеров фазных обмоток (лучей) эквивалентных несимметричных шестифазных звезд, из соотношения

где эл. град., а n=2, 3, 4, 5, …, - общее число преобразовательных структур, при этом первичные обмотки трансформаторов выполнены по схемам, обеспечивающим последовательно нарастающий (убывающий) на эл. град. фазовый сдвиг несимметричных шестифазных систем напряжений относительно первой системы, а n шестифазных вентильных мостов соединены последовательно между собой разноименными полюсами, причем разноименные крайние полюса первого и последнего мостов образуют выходные выводы устройства.

На фиг.1 приведена общая структурная схема предлагаемого преобразователя; на фиг.2 приведена схемная реализация предлагаемого преобразователя при n=3; на фиг.3 приведены векторные диаграммы напряжений для преобразователя с параметром n=3, представленные в виде перемещаемых относительно друг друга амплитудно-фазовых портретов напряжений вторичных обмоток и векторов результирующих выпрямляемых напряжений, образующих пульсации si выпрямленного напряжения; на фиг.4 приведены зависимости углов топологии от числа n; на фиг.5 приведены зависимости полной мощности всех вторичных обмоток от фазности преобразования (от числа преобразовательных структур n).

Многофазный мостовой преобразователь переменного тока в постоянный (фиг.1) содержит n трехфазных трансформаторов 1 с первичными обмотками, схемы выполнения которых обеспечивают фазовый сдвиг между смежными несимметричными шестифазными системами вторичных напряжений источников, образованных вторичными обмотками трансформаторов, и n шестифазных вентильных мостов 2. Каждые шесть фазных выводов от источников вторичных напряжений соединены с шестью входами переменного тока одного из n шестифазных вентильных мостов 2, соединенных последовательно. Свободные разнополярные полюса крайних мостов соединены с нагрузкой 3.

Многофазный мостовой преобразователь переменного тока в постоянный при n=3 (фиг.2) содержит три трехфазных трансформатора 1, первичные обмотки которых, соединенные соответственно в скользящий треугольник, треугольник (или звезду) и скользящий треугольник с транспозицией соединения к фазам сети по сравнению с первым скользящим треугольником, обеспечивают фазовый сдвиг эл. град. между несимметричными шестифазными системами напряжений соответствующих вторичных обмоток трансформаторов, выполненных по схемам полуправильных шестиугольников, и три шестифазных вентильных моста 2. Каждые шесть фазных выводов от средних точек сторон полуправильных шестиугольников соединены с входами переменного тока соответствующих шестифазных вентильных мостов 2, соединенных последовательно. Свободные разнополярные полюса крайних мостов соединены с нагрузкой 3.

Принцип работы устройства (фиг.1) рассмотрим при n=3 (фиг.2). Работа преобразователя иллюстрируется векторными диаграммами напряжений источников ЭДС, представленных в виде амплитудно-фазовых портретов напряжений вторичных обмоток (фиг.3) и развернутыми векторными диаграммами, поясняющими принцип формирования векторов результирующих выпрямляемых напряжений (фиг.3). В любой фазе цикла преобразования пульсации выпрямленного напряжения si образуются в результате сложения максимальных на данный момент линейных ЭДС шестифазных систем, формируемых между средними точками вторичных фазных обмоток (сторон) полуправильных шестиугольников. В соответствии с полярностью линейных ЭДС в открытое состояние в каждом шестифазном мосту переходит та пара вентилей, которая подключена к выводам от фаз, между которыми в данный момент линейная ЭДС максимальна. Особенностью преобразователя является то, что смежные максимальные линейные ЭДС между фазными выводами полуправильных шестиугольников отличаются по амплитуде. В результате этого на выходе каждого из шестифазных вентильных мостов формируются неканонические по форме 12-пульсные выпрямленные напряжения. Так как эти напряжения сдвинуты по фазе относительно друг друга на 20 эл. град., в результате сложения их мгновенных значений на нагрузке формируется напряжение с канонической формой кривой, имеющей 36 пульсаций за период сетевого напряжения.

Углы проводимости вентилей шестифазных мостов зависят от топологической реализации (n, ε). Вентили любого из мостов (фиг.1, фиг.2), подключенные к фазам (эквивалентным лучам шестифазной звезды), имеющим меньшие напряжения (или к средним точкам больших вторичных фазных обмоток шестиугольников), имеют меньший угол проводимости, чем вентили, подключенные к фазам источников (лучей) с большим напряжением (или к средним точкам малых вторичных фазных обмоток шестиугольников). При этом если отношение меньшей стороны шестиугольника к большей стороне (отношение величины малого луча звезды к величине большого луча - больше или равно то вентили, подключенные к средней точке малой стороны (большему лучу), имеют угол проводимости а вентили, подключенные к средней точке большей стороны (меньшему лучу), имеют угол проводимости

Если ϖ≤0,366 (для звезды: отношение величины малого луча звезды к величине большого луча меньше или равно 0,732), то вентили, подключенные к средней точке малой стороны (большему лучу), имеют угол проводимости а вентили, подключенные к средней точке большей стороны (меньшему лучу), имеют угол проводимости

Вторичные обмотки трансформаторов преобразователей, выполненные в виде полуправильных шестиугольников, проводят ток весь период сетевого напряжения, причем в отдельные части периода этот ток составляет половину, одну треть или две трети тока нагрузки. Допуская, что ток нагрузки практически сглажен (id=Id=1,0 о.е.), в соответствии с топологическими построениями развернутых векторных диаграмм получен ряд общих формул для расчета действующего значения тока вторичной обмотки трансформатора многофазного мостового преобразователя с числом фаз, равным 12n. При

При ϖ≤0,366

По векторным диаграммам определены модули векторов результирующих выпрямляемых напряжений (здесь амплитудные значения US относительно величин амплитуд напряжений больших сторон шестиугольников). Для преобразователей с при n=2, 3, 4, ….

для преобразователей с ϖ≤0,366

где

В последнем соотношении для первой пары чисел n (2 и 3) используется только первое слагаемое в квадратных скобках; для второй пары (4 и 5) только первое и второе слагаемые; для третьей пары (6 и 7) - первое, второе и третье слагаемые, и так далее. При параметре n=1 (точка смены топологических размеров - фиг.4), относящемся к прототипу, можно использовать формулу для определения US" (или US') без применения множителя V.

Используя формулы, по которым определяются токи в обмотках, а также размеры обмоток (величины напряжений обмоток) и величины векторов результирующих выпрямляемых напряжений, получены соотношения, определяющие полные мощности вторичных обмоток трансформаторов преобразователя.

При относительная (от мощности нагрузки постоянного тока Pd) полная мощность вторичных обмоток

При ϖ≤0,366

В приведенной ниже таблице даны параметры для предложенного преобразователя с n=2, …, 6 при выполнении вторичных обмоток в виде полуправильных шестиугольников. Параметр n=1 относится к прототипу.

Зависимости полной мощности вторичных обмоток от фазности преобразования (от числа каскадов n), приведенные на фиг.5, показывают, что при эл. град.) с увеличением n мощность вторичных обмоток (зависимость 1) уменьшается и в пределе при n→∞ стремится к величине 1,047 от мощности нагрузки Рd.

При n=3 (фазность преобразования 36) полная мощность вторичных обмоток предлагаемого преобразователя равна мощности вторичных обмоток (зависимость 2, показанная пунктиром) однотрансформаторного мостового 24-фазного преобразователя с четырьмя последовательно соединенными трехфазными вентильными мостами, а затем асимптотически уменьшается.

При эл. град.) полная мощность вторичных обмоток с увеличением n возрастает (зависимость 3) от уровня мощности вторичных обмоток трансформатора преобразователя с одной преобразовательной структурой (n=1, ϖ=0,366, ε=30 эл. град.), но не более чем на 3% в пределах реально выполнимого числа преобразовательных структур (каскадов), например n=6, стремясь при этом к значению 1,283 от мощности нагрузки Рd. Качество преобразования при такой топологии преобразователя менее зависимо от величины конструктивной несимметрии, возникающей при изготовлении вторичных фазных обмоток.

В отличие от преобразователей, агрегированных из преобразовательных структур прототипа, соотношения топологических размеров вторичных фазных обмоток трансформаторов которых равны при любой фазности, в предлагаемом преобразователе, каждой фазности преобразования соответствуют два соотношения топологических размеров обмоток, причем одинаковые только для n составных структур конкретной реализации преобразователя, что расширяет область применения. Расширение диапазона выбора наиболее оптимального варианта соотношений чисел витков вторичных фазных обмоток (включая, в том числе, соотношения для преобразователей на основе прототипа) для различных мощностей и уровней выпрямленного напряжения, способствует повышению качества преобразования, реализуемого при более высоких значениях кратности частоты пульсаций выпрямленного напряжения.

Преобразователь при любой топологической реализации сохраняет хорошее качество преобразования, даже имея относительно большую конструктивную несимметрию напряжений вторичных фазных обмоток. Особенно это проявляется при меньших величинах параметров ε в каждой паре данных параметров (см. таблицу) для конкретной реализации преобразователя с заданным параметром n.

Кроме того, ряд топологических реализаций преобразователя позволяет обеспечить снижение типовой мощности трансформаторов относительно типовой мощности трансформатора прототипа (см. таблицу).

Таким образом, предлагаемый многофазный мостовой преобразователь переменного тока в постоянный имеет по сравнению с прототипом более высокое качество преобразования.

Похожие патенты RU2387070C1

название год авторы номер документа
ПРЕОБРАЗОВАТЕЛЬ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ В ПОСТОЯННОЕ 2008
  • Евдокимов Сергей Александрович
RU2373628C1
МОСТОВОЙ ПРЕОБРАЗОВАТЕЛЬ ПЕРЕМЕННОГО ТОКА В ПОСТОЯННЫЙ 2009
  • Евдокимов Сергей Александрович
RU2405238C1
ПРЕОБРАЗОВАТЕЛЬ ПЕРЕМЕННОГО ТОКА В ПОСТОЯННЫЙ 2008
  • Евдокимов Сергей Александрович
RU2362262C1
СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЬНЫМ АГРЕГАТОМ 2009
  • Хохлов Юрий Иванович
  • Гиззатуллин Данил Валиуллович
  • Осипов Алексей Германович
RU2402143C1
СПОСОБ УПРАВЛЕНИЯ МНОГОФАЗНЫМ ВЫПРЯМИТЕЛЬНЫМ АГРЕГАТОМ 2007
  • Хохлов Юрий Иванович
RU2333589C1
2 @ -Фазный компенсированный преобразователь переменного напряжения в постоянное и обратно 1991
  • Хохлов Юрий Иванович
  • Фишлер Яков Львович
  • Пестряева Людмила Михайловна
  • Виноградов Андрей Владимирович
  • Светоносов Валерий Петрович
  • Иванец Нина Андреевна
  • Алимов Бахрам Сайфиевич
  • Грачев Владимир Никитович
  • Бобков Владимир Александрович
SU1781794A1
ПРЕОБРАЗОВАТЕЛЬ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ В ПОСТОЯННОЕ 2007
  • Евдокимов Сергей Александрович
RU2340072C1
ПРЕОБРАЗОВАТЕЛЬ ПЕРЕМЕННОГО ТОКА В ПОСТОЯННЫЙ С 8-КРАТНОЙ ЧАСТОТОЙ ПУЛЬСАЦИИ 2009
  • Евдокимов Сергей Александрович
RU2383986C1
ПРЕОБРАЗОВАТЕЛЬ ПЕРЕМЕННОГО ТОКА В ПОСТОЯННЫЙ С 16-КРАТНОЙ ЧАСТОТОЙ ПУЛЬСАЦИИ 2009
  • Евдокимов Сергей Александрович
RU2391765C1
ДЕВЯТИФАЗНЫЙ ПРЕОБРАЗОВАТЕЛЬ ЧИСЛА ФАЗ 2012
  • Григорьев Сергей Николаевич
  • Сучков Валентин Анатольевич
  • Афонина Елена Вячеславовна
  • Филатов Владимир Витальевич
  • Солуянов Юрий Иванович
RU2487455C1

Иллюстрации к изобретению RU 2 387 070 C1

Реферат патента 2010 года МНОГОФАЗНЫЙ МОСТОВОЙ ПРЕОБРАЗОВАТЕЛЬ ПЕРЕМЕННОГО ТОКА В ПОСТОЯННЫЙ

Многофазный мостовой преобразователь переменного тока в постоянный предназначен для питания потребителей с повышенными требованиями к качеству выпрямленного напряжения и электромагнитной совместимости. Предложенный многофазный мостовой преобразователь переменного тока в постоянный содержит n преобразовательных структур, каждая из которых включает шестифазный вентильный мост и трехфазный трансформатор, вторичные фазные обмотки которого соединены по схеме, образующей источник несимметричной шестифазной системы напряжений, два значения которых чередуются по величине от фазы к фазе через угол 60 эл. град., а фазные выводы источника подключены к входам переменного тока шестифазного вентильного моста, причем вторичные фазные обмотки трансформаторов соединены по одинаковым схемам и для всех структур установлено отношение между величинами чередующихся в несимметричных шестифазных системах напряжений смежных фаз, определяемое, относительно базовых топологических размеров фазных обмоток (лучей) эквивалентных несимметричных шестифазных звезд, из соотношения

где эл. град., а n=2, 3, 4, 5, …, - общее число преобразовательных структур, при этом первичные обмотки трансформаторов выполнены по схемам, обеспечивающим последовательно нарастающий (убывающий) на Δφ=π/3n эл. град. фазовый сдвиг несимметричных шестифазных систем напряжений относительно первой системы, а n шестифазных вентильных мостов соединены последовательно между собой разноименными полюсами, причем разноименные крайние полюса первого и последнего мостов образуют выходные выводы устройства. Технический результат - предложенный многофазный мостовой преобразователь переменного тока в постоянный имеет более высокое качество преобразования. 5 ил., 1 табл.

Формула изобретения RU 2 387 070 C1

Многофазный мостовой преобразователь переменного тока в постоянный, содержащий преобразовательную структуру, включающую шестифазный вентильный мост и трехфазный трансформатор, вторичные фазные обмотки которого соединены по схеме, образующей источник несимметричной шестифазной системы напряжений, два значения которых чередуются по величине от фазы к фазе через угол 60 эл. град, а фазные выводы источника подключены к входам переменного тока шестифазного вентильного моста, отличающийся тем, что он снабжен дополнительными преобразовательными структурами, при этом образовано n преобразовательных структур, вторичные фазные обмотки трансформаторов которых соединены по одинаковым схемам, и для всех структур установлено отношение между величинами чередующихся в несимметричных шестифазных системах напряжений смежных фаз, определяемое, относительно базовых топологических размеров фазных обмоток (лучей) эквивалентных несимметричных шестифазных звезд, из соотношения

где эл. град, а n=2, 3, 4, 5,... - общее число преобразовательных структур, при этом первичные обмотки трансформаторов выполнены по схемам, обеспечивающим последовательно нарастающий (убывающий) на Δφ=π/3n эл. град фазовый сдвиг несимметричных шестифазных систем напряжений относительно первой системы, а n шестифазных вентильных мостов соединены последовательно между собой разноименными полюсами, причем разноименные крайние полюса первого и последнего мостов образуют выходные выводы устройства.

Документы, цитированные в отчете о поиске Патент 2010 года RU2387070C1

Ступенчато-мостовой вентильный преобразователь 1980
  • Репин Аркадий Михайлович
SU917281A1
Трехфазный преобразователь переменного напряжения в постоянное повышенной величины 1978
  • Потанин Олег Григорьевич
SU748732A1
US 3764886 A, 09.10.1973.

RU 2 387 070 C1

Авторы

Евдокимов Сергей Александрович

Даты

2010-04-20Публикация

2009-03-10Подача