СПОСОБ КОНТРОЛЯ КОНЦЕНТРАЦИИ ДОЧЕРНИХ ПРОДУКТОВ РАСПАДА РАДОНА В ВОЗДУХЕ Российский патент 2010 года по МПК G01N30/00 

Описание патента на изобретение RU2387988C1

Изобретение относится к ядерной физике и может быть использовано для контроля радиоактивности воздуха производственных и жилых помещений, например, для учета влияния естественного содержания дочерних продуктов распада (ДПР) радона в воздухе при контроле вероятного загрязнения радиоактивными веществами воздуха по их собственному альфа-излучению, а также при контроле загрязненности поверхности ТВЭЛов ядерным топливом при их изготовлении.

Известен способ [1] для определения содержания ДПР в воздухе, заключающийся в том, что пробу воздуха продувают через фильтр, а затем этот фильтр помещают под детектор альфа-излучения и по скорости счета альфа-частиц в определенные интервалы времени после окончания продувки, с учетом объема воздуха, прокаченного через фильтр, определяют объемную концентрацию ДПР (полоний-218, полоний-214) в воздухе.

Недостатком известного способа является низкая эффективность регистрации альфа-частиц из-за их слабой проникающей способности и их поглощения материалом фильтра, наличие в составе устройства энергоемкой воздуходувки, кроме того, фильтры являются одноразовыми и вносят весомый вклад в затратную часть измерений.

Известен также способ, в котором ДПР электростатически осаждаются (сорбируются) из воздуха непосредственно на поверхность детектора [2]. Недостатком этого способа является отсутствие экспрессности, т.к. пока ДПР на поверхности детектора не распадутся (2-3 часа), следующее измерение не может быть выполнено с требуемой точностью, низкая чувствительность из-за малого объема, из которого сорбируются ДПР, ограниченного объемом камеры, в которой размещается детектор и создается электрическое поле.

За прототип принято наиболее близкое к предлагаемому изобретению техническое решение [3], в котором ДПР осаждаются на сменный фильтр-мишень. Для улучшения улавливания аэрозолей применяется электростатическое поле, при этом, одновременно через фильтр-мишень прокачивается анализируемый воздух.

Недостатками прототипа является низкая чувствительность регистрации альфа-частиц, т.к. регистрация ведется с одной поверхности фильтра в геометрии измерения 2π. Кроме того, устройство усложнено за счет системы прокачки воздуха и конструктивного обеспечения наличия электростатического поля в объеме прибора.

Технический результат, получаемый при реализации данного изобретения, заключается в повышении чувствительности, обеспечении экспрессности контроля ДПР в воздухе и упрощении реализации.

Указанный технический результат достигается за счет реализации способа контроля концентрации ДПР в воздухе, заключающегося в сорбции аэрозолей воздуха, содержащего ионы ДПР, с помощью электростатического поля на сменную мишень с последующим помещением ее под датчик альфа-радиометра, при котором ионы ДПР сорбируют из открытого пространства помещения на металлическую поверхность образца, выполненного в виде отрезка трубки, сорбирование ДПР проводят в течение заданного времени, после чего образец помещают в модуль детектирования, который обеспечивает регистрацию альфа-частиц, испускаемых ДПР, в геометрии измерения 4π, а время регистрации альфа-частиц и время сорбции устанавливают исходя из требуемой экспрессности и точности, затем рассчитывают значение концентрации ДПР на основании полученной скорости счета с учетом градуировочного коэффициента.

На фиг.1 показана схема реализации предложенного способа. Образец выполняют в форме металлической трубки 1 и надевают на контактную часть высоковольтного вывода 2, затем от источника высокого напряжения 3 на образец подают отрицательный потенциал. Экспериментально найдено, что этот потенциал должен составлять порядка 8 кВ. Производят сорбирование в течение времени τ1. Затем, высоковольтный источник отключают, образец снимают и помещают в модуль детектирования 4. По средней скорости счета nα, измеренной устройством обработки информации 5 за время τ2, определяют удельную концентрацию ДПР в объеме помещения АДПР, Бк/м3, по формуле:

,

где Kг - пересчетный (градуировочный) коэффициент, учитывающий эффективность регистрации альфа-частиц детектором и эффективность сорбирования (осаждения) ДПР на образец, (Бк·с)/м3.

Для определения коэффициента Kг берут металлический цилиндр с одним из изоляционных фланцев объемом VЦ. В него (по оси в центре) помещают образец, заполняют его воздухом помещения и от высоковольтного источника подают отрицательный потенциал. Выдерживают в течение времени τ1, причем это время должно обеспечить сорбцию всех ДПР (для объема порядка пяти литров это время не менее 5 мин), после чего образец помещают в модуль детектирования и измеряют среднюю скорость счета (nαЦ) за время τ2. Затем аналогичный образец устанавливают на высоковольтный источник, как показано на фиг.1. Подают такой же потенциал, выдерживают то же время τ1 и замеряют среднюю скорость счета (nαП). Коэффициент Кг находят по формуле:

,

где ε - эффективность регистрации альфа-частиц.

Экспериментально установлено при использовании цилиндра объемом 4,9 л (диаметр 160 мм, высота 245 мм), модуля детектирования с ε=0,4, время сорбции τ1=20 мин, что коэффициент Кг=6,5 (Бк·с)/м3.

На фиг.2 представлены типичные графики средних скоростей счета ДПР от времени наблюдения (Т) при длительности сорбции (τ1) 5 и 20 мин. Из графиков видно, что с достаточной степенью точности в первые 20-30 мин среднюю скорость счета можно считать постоянной и, исходя из требуемых точности и экспрессности, время измерения τ2 может быть выбрано от 5 до 30 мин.

Предельные возможности предлагаемого способа могут быть оценены по относительной статистической погрешности, которая, исходя из среднего квадратического отклонения зарегистрированного числа импульсов, равного корню квадратному из этого числа, с доверительной вероятностью 0,95, равна:

.

Из этой формулы следует, что минимальная активность ДПР, которая может быть измерена за время τ2, равна:

.

Согласно этой формуле минимальная активность, которая может быть измерена с погрешностью не более 0,3 (30%) при времени измерения τ2, равном 10 мин, составляет величину 0,5 Бк/м3 (время сорбции 20 мин).

Для сравнения, при времени прокачки через фильтр 5 мин и измерении 10 мин по методу, изложенному в [1], минимальный уровень составляет величину около 185 Бк/м3 (5·10-12 кюри/л).

В случае же, если время измерения принять равным 30 мин, то можно достигнуть чувствительности на уровне 0.16 Бк/м3.

В связи с тем, что используется маломощный высоковольтный источник напряжения с током короткого замыкания не более 0,1 мА, устройство является полностью электрически безопасным.

Указанные отличительные признаки в предложенном способе и устройстве необходимы и достаточны для обеспечения заявленного технического результата.

Источники информации

1. К.П.Марков, Н.В.Рябов, К.Н.Стась «Экспресс-метод оценки радиационной опасности, связанной с наличием в воздухе дочерних продуктов радона». Атомная энергия, т.12, вып.4, 1962 г. Стр.315-319.

2. A.J.Howard, B.K.Johnson and W.P.Strange «High-sentivity detection system for radon in air» Nucl. Instr. and Meth. in Phys. Research. A 293 (1990), pp.589-595.

3. В.В.Абеленцеев, В.Н.Севостьянов «Практика использования комплекса радонометрической аппаратуры». Вестник НЯЦ РК, вып.1 (17), март 2004 г., стр.18-23.

Похожие патенты RU2387988C1

название год авторы номер документа
РАДИОМЕТР ДЛЯ ОПЕРАТИВНОГО ИЗМЕРЕНИЯ ОБЪЕМНОЙ АКТИВНОСТИ РАДОНА, ТОРОНА И ДОЧЕРНИХ ПРОДУКТОВ ИХ РАСПАДА В ВОЗДУХЕ 1996
  • Бабушкина О.П.
  • Болотова Н.В.
  • Воронов Б.Ф.
  • Даниленко К.Н.
  • Шамолин В.М.
  • Хлобыстин П.Б.
  • Янов В.С.
RU2123192C1
СПОСОБ ВЫЯВЛЕНИЯ ПРОВОДЯЩИХ В ПЛОСКОСТИ СМЕСТИТЕЛЯ ТЕКТОНИЧЕСКИХ НАРУШЕНИЙ 2014
  • Киляков Алексей Владимирович
  • Киляков Владимир Николаевич
  • Шевченко Александр Константинович
  • Бочкарев Анатолий Владимирович
  • Бочкарев Виталий Анатольевич
RU2658582C2
КАМЕРА ДЛЯ ИЗМЕРЕНИЯ ОБЪЕМНОЙ АКТИВНОСТИ РАДОНА В ПРОБАХ ОКРУЖАЮЩЕГО ВОЗДУХА 1992
  • Котляров А.А.
  • Кривашеев С.В.
RU2008694C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ РАДОНА И ЕГО ДОЧЕРНИХ ПРОДУКТОВ В ВОЗДУХЕ 1996
  • Ляпидевский В.К.
RU2126981C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ РАДОНА И ЕГО ДОЧЕРНИХ ПРОДУКТОВ В ВОЗДУХЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Ляпидевский Виктор Константинович
RU2010265C1
СПОСОБ СНИЖЕНИЯ ЭКВИВАЛЕНТНОЙ РАВНОВЕСНОЙ ОБЪЕМНОЙ АКТИВНОСТИ ИЗОТОПОВ РАДОНА В ПОМЕЩЕНИИ 1996
  • Кузнецов Андрей Григорьевич
  • Снытко Александр Сергеевич
RU2101790C1
Интегральный радиометр радона с диэлектрическим трековым детектором 2019
  • Маренный Альберт Михайлович
  • Лукьянов Сергей Григорьевич
  • Маренный Михаил Альбертович
  • Нефедов Николай Александрович
RU2731592C1
РАДИОМЕТР ДЛЯ ИЗМЕРЕНИЯ ОБЪЕМНОЙ АКТИВНОСТИ ГАЗООБРАЗНЫХ НУКЛИДОВ И РАДИОАКТИВНЫХ АЭРОЗОЛЕЙ В ВОЗДУХЕ 1993
  • Кутелев А.С.
  • Лапшин В.И.
  • Шаврин Н.Ю.
RU2035053C1
Эманаториум радона и его дочерних продуктов распада 2020
  • Панов Сергей Валерьевич
RU2746641C1
СПОСОБ БЕЗЫНЕРЦИОННОГО ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ РАДОНА В ВОЗДУХЕ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2001
  • Ляпидевский В.К.
RU2199766C2

Иллюстрации к изобретению RU 2 387 988 C1

Реферат патента 2010 года СПОСОБ КОНТРОЛЯ КОНЦЕНТРАЦИИ ДОЧЕРНИХ ПРОДУКТОВ РАСПАДА РАДОНА В ВОЗДУХЕ

Изобретение относится к ядерной физике и может быть использовано для контроля радиоактивности воздуха производственных и жилых помещений, для учета влияния естественного содержания дочерних продуктов распада радона в воздухе при контроле вероятного загрязнения радиоактивными веществами воздуха по их собственному альфа-излучению, а также при контроле загрязненности поверхности ТВЭЛов ядерным топливом при их изготовлении. Предложен способ контроля концентрации дочерних продуктов распада радона в воздухе помещения, заключающийся в сорбции аэрозолей воздуха с помощью электростатического поля на сменную мишень с последующим помещением ее под датчик альфа-радиометра. При этом для повышения чувствительности, экспрессности контроля и упрощения реализации способа продукты распада сорбируют из открытого пространства помещения на металлическую поверхность образца, выполненного в виде отрезка трубки. Сорбирование проводят в течение заданного времени, после чего образец помещают в модуль детектирования. Затем проводят регистрацию испускаемых альфа-частиц в геометрии измерения 4π, а время регистрации альфа-частиц и время сорбции устанавливают исходя из требуемых экспрессности и точности. Далее рассчитывают значение концентрации ДПР на основании полученной скорости счета с учетом градуировочного коэффициента. Техническим результатом изобретения является повышение чувствительности, обеспечение экспрессности контроля ДПР в воздухе и упрощение реализации. 2 ил.

Формула изобретения RU 2 387 988 C1

Способ контроля концентрации дочерних продуктов распада радона (ДПР) в воздухе помещения, заключающийся в сорбции аэрозолей воздуха, содержащего ионы ДПР, с помощью электростатического поля на сменную мишень с последующим помещением ее под датчик альфа-радиометра, отличающийся тем, что ионы ДПР сорбируют из открытого пространства помещения на металлическую поверхность образца, выполненного в виде отрезка трубки, сорбирование ДПР проводят в течение заданного времени, после чего образец помещают в модуль детектирования, проводят регистрацию альфа-частиц, испускаемых ДПР, в геометрии измерения 4π, а время регистрации альфа-частиц и время сорбции устанавливают исходя из требуемых экспрессности и точности, затем рассчитывают значение концентрации ДПР на основании полученной скорости счета с учетом градуировочного коэффициента.

Документы, цитированные в отчете о поиске Патент 2010 года RU2387988C1

СПОСОБ БЕЗЫНЕРЦИОННОГО ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ РАДОНА В ВОЗДУХЕ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2001
  • Ляпидевский В.К.
RU2199766C2
СПОСОБ БЕЗЫНЕРЦИОННОГО ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ РАДОНА В ВОЗДУХЕ 1998
  • Ляпидевский В.К.
RU2183842C2
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ РАДОНА В ВОЗДУХЕ 1992
  • Ляпидевский Виктор Константинович
RU2091815C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ РАДОНА И ЕГО ДОЧЕРНИХ ПРОДУКТОВ В ВОЗДУХЕ 1992
  • Ляпидевский Виктор Константинович
RU2076337C1
DE 4334320 А1, 13.04.1995
WO 9203748 А1, 27.01.1992.

RU 2 387 988 C1

Авторы

Жаворонко Александр Иванович

Кривоносов Сергей Владимирович

Даты

2010-04-27Публикация

2009-02-11Подача