МОЩНЫЙ СВЧ ПОЛЕВОЙ ТРАНЗИСТОР С БАРЬЕРОМ ШОТКИ Российский патент 2010 года по МПК H01L29/812 

Описание патента на изобретение RU2393589C1

Изобретение относится к электронной технике и может быть использовано в качестве активных элементов СВЧ устройств различного назначения.

Выходная мощность и коэффициент усиления по мощности (далее коэффициент усиления) - одни из основных параметров мощных СВЧ полевых транзисторов с барьером Шотки (далее полевой транзистор).

Одни из возможных путей повышения указанных параметров - это:

- снижение теплового и паразитных электрических сопротивлений,

- увеличение ширины электрода затвора,

- снижение паразитных емкостей,

- либо их сочетание.

С целью снижения паразитного электрического сопротивления электрода затвора полевого транзистора используют известное и широко используемое на сегодня конструктивное решение, заключающееся в том, что электрод затвора полевого транзистора с барьером Шотки выполнен так называемой Т-образной конфигурацией субмикронной длины [1]. При этом диэлектрический слой расположен под верхней частью электрода затвора Т-образной конфигурации, как со стороны электрода истока, так и со стороны электрода стока. Данное конструктивное решение позволило благодаря снижению паразитного электрического сопротивления повысить выходную мощность и коэффициент усиления полевого транзистора.

Однако, с другой стороны, наличие диэлектрического слоя под верхней частью электрода затвора полевого транзистора Т-образной конфигурации со стороны электрода стока приводит к возрастанию паразитной емкости между электродами затвор-сток и тем самым:

во-первых, ограничивает максимально возможное повышение выходных параметров СВЧ,

во-вторых, упомянутая паразитная емкость является элементом нежелательной положительной обратной связи, приводящей к паразитной генерации, это усложняет использование полевого транзистора в качестве активного элемента в устройствах СВЧ и как следствие - ограничивает его функциональные возможности.

С целью увеличения ширины электрода затвора полевого транзистора используют многозатворную конструкцию.

При этом чем больше ширина общего электрода затвора, тем выше выходная мощность.

Однако, с другой стороны, при достаточно большой ширине единичного электрода затвора снижается эффективность работы полевого транзистора, то есть удельная выходная мощность в расчете на единицу ширины единичного электрода затвора вследствие значительного паразитного сопротивления общего электрода затвора и как следствие - снижение выходной мощности, коэффициента усиления и коэффициента полезного действия.

Известен мощный СВЧ полевой транзистор с барьером Шотки многозатворной конструкции, в котором с целью устранения выше указанного недостатка он выполнен в виде так называемой гребенки из чередующейся последовательности единичных электродов истока, затвора, стока, при этом единичные электроды затвора расположены в канавках каналов, выполненных между единичными электродами истока и стока.

При этом одноименные единичные электроды истока, затвора, стока соединены электрически [2].

Данная конструкция полевого транзистора с барьером Шотки позволила снизить паразитное сопротивление общего электрода затвора и как следствие - увеличить выходную мощность, коэффициент усиления и коэффициент полезного действия.

Кроме того, она позволяет сделать полевой транзистор с барьером Шотки компактным.

Недостаток данной конструкции заключается в неточности совмещения единичных электродов затвора в канавках каналов, обуславливаемая характеристиками оборудования и технологией изготовления. Неточность совмещения единичных электродов затвора полевого транзистора приводит к неидентичности его каналов. А неидентичность каналов в свою очередь приводит к снижению эффективности сложения мощности каналов и как следствие - снижению выходной мощности и коэффициента усиления СВЧ полевого транзистора с барьером Шотки.

Известен мощный СВЧ полевой транзистор с барьером Шотки, выполненный также в виде гребенки из чередующейся, по меньшей мере, более одной последовательности единичных электродов истока, затвора, стока [3].

При этом, с целью устранения упомянутой выше неидентичности каналов, между парами единичных электродов исток-сток расположены области полуизолирующего арсенида галлия, а единичные электроды затвора, расположенные в парах единичных электродов исток-сток, выполнены длиной не более 0,7 мкм и смещены в канавке в сторону единичного электрода истока.

При этом одноименные единичные электроды истока, затвора, стока соединены электрически.

Это позволило:

во-первых, устранить неидентичность каналов и тем самым повысить эффективность сложения мощности каналов,

во-вторых, повысить пробивное напряжение между единичными электродами затвор-сток и тем самым повысить напряжение питания единичного электрода стока.

И как следствие того и другого - увеличение выходной мощности, коэффициента усиления и коэффициента полезного действия полевого транзистора с барьером Шотки.

Однако, с другой стороны:

во-первых, при некоторых размерах области полуизолирующего арсенида галлия, например, менее 4 мкм наблюдается повышение тока утечки между единичными электродами исток-сток, что приводит к появлению неуправляемого единичным электродом затвора тока стока,

во-вторых, при некоторых размерах канавок в парах единичных электродов исток-сток, например, менее 0,5 мкм, в которых расположены единичные электроды затвора, имеет место снижение пробивного напряжения между электродами затвор-исток и затвор-сток.

И как следствие того и другого - снижение выходной мощности, коэффициента усиления и коэффициента полезного действия полевого транзистора с барьером Шотки.

Известен мощной СВЧ полевой транзистор с барьером Шотки, на полуизолирующей подложке арсенида галлия с активным слоем n-типа проводимости, толщиной не более 0,4 мкм и концентрацией легирующей примеси 2×1017-1×1018 см3, который выполнен, как и предыдущий аналог, в виде гребенки из чередующейся, по меньшей мере, более одной последовательности единичных электродов истока, затвора, стока. При этом между парами электродов исток-сток расположены области полуизолирующего арсенида галлия, а в парах единичных электродов исток-сток выполнены каналы с канавками, в последних расположены единичные электроды затвора длиной не более 0,7 мкм, при этом единичные электроды затвора выполнены асимметричными в сторону электродов истока, одноименные единичные электроды истока, затвора, стока соединены электрически [4 - прототип].

В котором, с целью снижения тока утечки между единичными электродами исток-сток и увеличения пробивного напряжения между единичными электродами затвор-исток и сток-затвор, области полуизолирующего арсенида галлия выполнены шириной, равной 4-6 мкм, канавки в парах единичных электродов исток-сток выполнены шириной, равной 0,9-1,3 мкм, и глубиной, равной 0,2-0,3 мкм, а единичные электроды затвора расположены от края канавок со стороны единичных электродов истока и стока на расстоянии, равном 0,1-0,3 и 0,5-0,7 мкм соответственно.

Оптимизация ширины области полуизолируещего арсенида галлия, ширины и глубины канавок, равно как и расположение единичных электродов затвора в канавках, обеспечила снижение токов утечки между единичными электродами исток-сток и увеличение пробивного напряжения между единичными электродами затвор-исток и затвор-сток и как следствие - дальнейшее повышение выходной мощности, коэффициента усиления и коэффициента полезного действия СВЧ полевого транзистора с барьером Шотки.

Способность СВЧ полевого транзистора отдавать мощность зависит от его способности пропускать достаточно большой ток через его канал.

И, следовательно, указанная способность СВЧ полевого транзистора увеличивается с каждой чередующейся в гребенке последовательностью единичных электродов истока, затвора, стока.

Однако количество последовательностей электродов истока, затвора, стока ограничиваться как размерами кристалла полевого транзистора, так и его электрическими параметрами, например фазовой неидентичностью сигнала, распределенного по единичным электродам затвора полевого транзистора.

Выходная мощность данного СВЧ полевого транзистора с барьером Шотки составляет порядка 750 мВт, коэффициент усиления порядка 10 дБ на частоте 10 ГГц.

Эти достаточно высокие выходные параметры данного полевого транзистора с барьером Шотки являются не достаточными при применении его в качестве активного элемента в ряде устройств СВЧ диапазона, например усилителей мощности для активных фазированных антенных решеток (АФАР), где требуется высокая удельная мощность и высокий коэффициент полезного действия.

Техническим результатом изобретения является повышение выходной мощности, коэффициента усиления по мощности, коэффициента полезного действия и расширение функциональных возможностей СВЧ полевого транзистора с барьером Шотки.

Указанный технический результат достигается заявленным мощным СВЧ полевым транзистором с барьером Шотки, содержащим полуизолирующую подложку арсенида галлия с активным слоем, гребенку из чередующейся, по меньшей мере, более одной последовательности единичных электродов истока, затвора, стока, при этом между парами единичных электродов исток-сток расположены области полуизолирующего арсенида галлия шириной не менее 4 мкм, а в парах единичных электродов исток-сток расположены каналы с канавками шириной и глубиной, равной 0,9-1,3 мкм и не более 0,3 мкм соответственно, в канавках канала расположены единичные электроды затвора, при этом единичные электроды затвора расположены асимметрично в сторону единичных электродов истока, одноименные единичные электроды истока, затвора, стока соединены электрически.

При этом

- полевой транзистор с барьером Шотки в канале каждой из пар единичных электродов исток-сток со стороны единичного электрода истока дополнительно содержит диэлектрический слой, имеющий низкую диэлектрическую проницаемость, толщиной, равной 0,15-0,25 мкм,

- каждый из единичных электродов затвора относительно его боковой поверхности со стороны единичного электрода стока выполнен по высоте с разным размером поперечного сечения в сторону единичного электрода истока, верхним - длинным и нижним - коротким, примыкающим к поверхности канавки канала, при этом размер поперечного сечения нижней - короткой части единичного электрода затвора равен 0,05-0,5 мкм, размер поперечного сечения верхней - длинной части превышает размер поперечного сечения нижней - короткой части на 0,5-0,8 мкм,

- высота нижней - короткой части равна толщине дополнительного диэлектрического слоя,

- с одной стороны две взаимно перпендикулярные поверхности дополнительного диэлектрического слоя относительно его толщины непосредственно примыкают по ширине единичного электрода затвора к вертикальной поверхности его нижней - короткой части и к горизонтальной превышающей поверхности верхней - длинной части соответственно, а с противоположной стороны упомянутые поверхности расположены вровень с краем верхней - длинной части единичного электрода затвора либо перекрывают от этого края канал с единичным электродом истока не более 4 мкм.

Активным слоем может быть слой n-типа проводимости арсенида галлия либо гетероструктура с двумерным электронным газом.

Дополнительный диэлектрический слой с низкой диэлектрической проницаемостью может быть выполнен из двуокиси кремния либо нитрида кремния.

Полевой транзистор может иметь контактный слой толщиной 0,05-0,2 мкм, выполненный на активном слое.

Раскрытие сущности изобретения.

Совокупность существенных признаков формулы изобретения заявленного мощного СВЧ полевого транзистора с барьером Шотки, а именно:

наличие дополнительного диэлектрического слоя, имеющего низкую диэлектрическую проницаемость, толщиной, равной 0,15-0,25 мкм, расположенного в канале канала каждой из пар единичных электродов исток-сток со стороны единичного электрода истока:

во-первых, обеспечивает расположение превышающей верхней - длинной части единичного электрода затвора на поверхности этого диэлектрического слоя и тем самым обеспечивает снижение паразитного сопротивления каждого единичного электрода затвора и соответственно - паразитного сопротивления общего электрода затвора,

во-вторых, позволяет минимизировать и стабилизировать расстояние от единичного электрода затвора до края канавки со стороны единичного электрода истока и тем самым обеспечивает снижение паразитного сопротивления между единичными электродами затвор-исток и одновременно - увеличение пробивного напряжения между единичными электродами затвор-исток и затвор-сток.

И как следствие того и другого - повышение коэффициента усиления, выходной мощности и коэффициента полезного действия.

Выполнение каждого из единичных электродов затвора относительно его боковой поверхности со стороны единичного электрода стока по высоте с разным размером поперечного сечения в сторону единичного электрода истока, верхним - длинным и нижним - коротким, примыкающим к поверхности канавки канала, при этом размер поперечного сечения нижней - короткой части единичного электрода затвора равен 0,05-0,5 мкм, размер поперечного сечения верхней - длинной части превышает размер поперечного сечения нижней - короткой части на 0,5-0,8 мкм обеспечивает:

во-первых, снижение паразитной емкости между единичными электродами затвор-сток и как следствие - повышение выходной мощности, коэффициента усиления и коэффициента полезного действия,

во-вторых, как было указано выше, паразитная емкость между единичными электродами затвор-сток является элементом нежелательной положительной обратной связи, приводящей к паразитной генерации и, следовательно, ее снижение значительно уменьшает возможность возникновения этой паразитной генерации и как следствие - расширение функциональных возможностей СВЧ полевого транзистора с барьером Шотки.

Выполнение высоты нижней - короткой части единичных электродов затвора, равной толщине дополнительного диэлектрического слоя, обеспечивает жесткость конструкции единичного электрода затвора, его механическую прочность и тем самым надежность СВЧ полевого транзистора с барьером Шотки в целом.

Расположение дополнительного диэлектрического слоя, когда с одной стороны две его взаимно перпендикулярные поверхности относительно его толщины непосредственно примыкают по ширине единичного электрода затвора к вертикальной поверхности его нижней - короткой части и к горизонтальной превышающей поверхности верхней - длинной части соответственно, а с противоположной стороны упомянутые поверхности дополнительного диэлектрического слоя расположены вровень с краем верхней - длинной части единичного электрода затвора либо перекрывают от этого края канал с единичным электродом истока не более 4 мкм, обеспечивает оптимизацию расстояния от единичного электрода затвора до края канавки канала со стороны единичного электрода истока и тем самым - снижение паразитного сопротивления между электродами затвор-исток и одновременно - увеличение пробивного напряжения между электродами затвор-исток и затвор-сток и как следствие - повышение выходной мощности, коэффициента усиления и коэффициента полезного действия.

Выполнение дополнительного диэлектрического слоя толщиной менее 0,15 мкм и более 0,2 мкм не желательно, так как в первом случае приводит к увеличению паразитной емкости между электродами затвор-исток, а во втором - к возможным затруднениям при изготовлении полевого транзистора, например разрыву между нижней - короткой частью и верхней - длинной частью единичного электрода затвора.

Выполнение размера поперечного сечения нижней - короткой части единичного электрода затвора менее 0,05 и более 0,5 мкм не желательно, так как в первом случае может привести к нарушению целостности единичного электрода затвора, а во втором - к уменьшению коэффициента усиления.

Превышение длины верхней - длинной части единичного электрода затвора над нижней - короткой менее 0,5 мкм и более 0,8 мкм не желательно, так как в первом случае приводит к увеличению паразитного сопротивления каждого единичного и соответственно общего электрода затвора, а во втором - к увеличению паразитной емкости между единичными электродами затвор-исток.

Расположение дополнительного диэлектрического слоя менее превышающей поверхности верхней - длинной части единичного электрода затвора, так и его расположение с перекрытием канала с единичным электродом истока от края верхней - длинной части единичного электрода затвора более 4 мкм не желательно, так как в первом случае приводит к снижению механической прочности единичного электрода затвора, а во втором - к возможным затруднениям при изготовлении полевого транзистора, например, при изготовлении его контактных площадок.

Контактный слой толщиной как менее 0,1 мкм, так и более 0,3 мкм не желателен, в первом случае он не выполняет своей функции, а именно снижение контактного сопротивления единичных электродов истока и стока, а во втором - из-за возможного бокового травления канавки.

Итак, совокупность существенных признаков заявленного мощного СВЧ полевого транзистора с барьером Шотки благодаря сочетанию в конструкции различных технических решений и на ином уровне позволит еще более повысить достаточно высокие выходные параметры прототипа.

Изобретение иллюстрируется чертежами.

На фиг.1 и 2 дан фрагмент мощного СВЧ полевого транзистора с барьером Шотки, содержащий две последовательности единичных электродов истока, затвора, стока, где:

- полуизолирующая подложка арсенида галлия - 1,

- активный слой - 2

- гребенка из чередующейся последовательности единичных электродов истока, затвора, стока - 3,

- единичные электроды истока, затвора, стока - 4, 5, 6 соответственно,

- пары единичных электродов исток-сток - 7,

- области полуизолирующего арсенида галлия - 8,

- каналы - 9,

- канавки - 10,

- дополнительный диэлектрический слой - 11.

При этом, в том числе

на фиг.1 - частный случай выполнения, когда с противоположной стороны упомянутые поверхности дополнительного диэлектрического слоя расположены вровень с краем верхней - длинной части единичного электрода затвора,

на фиг.2 - частный случай выполнения, когда перекрывают от этого края канал с единичным электродом истока не более 4 мкм.

Мощный СВЧ полевой транзистор с барьером Шотки работает следующим образом:

на единичные электроды затвора и стока СВЧ полевого транзистора подаются необходимые напряжения смещения от внешних источников. При этом на единичные электроды затвора - отрицательное, а на единичные электроды стока - положительное относительно единичных электродов истока. На единичные электроды затвора подается СВЧ сигнал, который усиливается СВЧ полевым транзистором и подается на его выход.

Примеры конкретного выполнения заявленного мощного СВЧ полевого транзистора с барьером Шотки.

Пример 1

Мощный СВЧ полевой транзистор с барьером Шотки выполнен на полуизолирующей подложке арсенида галлия 1 с активным слоем 2, например n-типа проводимости арсенида галлия, толщиной не более 0,4 мкм и концентрацией легирующей примеси не более 3×1017 см3 в виде гребенки 3, например, из двух чередующихся последовательностей единичных электродов истока 4, затвора 5, стока 6. При этом между парами единичных электродов исток-сток 7 расположены области полуизолирующего арсенида галлия 8 шириной, равной 5 мкм. В парах единичных электродов исток-сток 7 расположены каналы 9 с канавками 10 шириной и глубиной, равной 1,1 и 0,25 мкм соответственно. В канавках 10 канала 9 расположены единичные электроды затвора 5 длиной не более 0,7 мкм асимметрично в сторону единичных электродов истока 4.

В канале 9 каждой из пар единичных электродов исток-сток 7 со стороны единичного электрода истока 4 выполнен дополнительный диэлектрический слой 11, например, из двуокиси кремния, имеющий относительную диэлектрическую проницаемость, толщиной, равной 0,20 мкм.

Каждый из единичных электродов затвора 5 относительно его боковой поверхности со стороны единичного электрода стока 6 выполнен по высоте с размером поперечного сечения в сторону единичного электрода истока 4 верхним - длинным, равным 1 мкм, и нижним - коротким, примыкающим к поверхности канавки 10 канала 9, равным 0,275 мкм, что соответствует превышению размера поперечного сечения верхней - широкой части над нижней - узкой частью единичного электрода затвора на 0,725 мкм.

Высота нижней - узкой части единичного электрода затвора равна 0,20 мкм - толщине дополнительного диэлектрического слоя 11.

При этом с одной стороны две взаимно перпендикулярные поверхности дополнительного диэлектрического слоя относительно его толщины непосредственно примыкают по ширине единичного электрода затвора 5 к вертикальной поверхности его нижней - узкой части и горизонтальной превышающей поверхности верхней - длинной части соответственно, а с противоположной стороны упомянутые поверхности расположены, например, вровень с краем верхней - длинной части единичного электрода затвора 5.

Примеры 2-7.

Аналогично примеру 1 выполнены мощные СВЧ полевые транзисторы с барьером Шотки, но при других значениях:

- толщины дополнительного диэлектрического слоя,

- превышения верхней - длинной части единичного электрода затвора над его нижней - узкой частью,

- перекрытия дополнительным диэлектрическим слоем канала с единичным электродом истока, как указанных в формуле изобретения (примеры 2-5), так и выходящих за ее пределы (примеры 6-7).

А так же с активным слоем типа гетероструктуры, например типа AlGaAs/InGaAs с двумерным электронным газом (пример 4).

А также дополнительным диэлектрическим слоем, выполненным из нитрида кремния (пример 5).

А также с контактным слоем, например, из GaAs n+, выполненном на активном слое (пример 5).

На изготовленных образцах мощных СВЧ полевых транзисторов с барьером Шотки были измерены выходная мощность, коэффициент усиления и определен коэффициент полезного действия.

Данные сведены в таблицу.

Как видно из таблицы, образцы мощных СВЧ полевых транзисторов с барьером Шотки, изготовленные согласно конструктивным параметрам, указанным в формуле изобретения (примеры 1-5), имеют по сравнению с прототипом более высокую выходную мощность примерно 1000 мВт, более высокий коэффициент усиления по мощности примерно 12 дБ на частоте 10 ГГц и соответственно более высокий коэффициент полезного действия.

Что касается образцов мощных СВЧ полевых транзисторов с барьером Шотки (примеры 6-7), изготовленных с конструктивными параметрами, выходящими за пределы, указанные в формуле изобретения, то они имеют более низкую выходную мощность примерно 750 мВт, более низкий коэффициент усиления по мощности примерно 10 дБ на частоте 10 ГГЦ и соответственно более низкий коэффициент полезного действия.

Таким образом, предлагаемая конструкция мощного СВЧ полевого транзистора с барьером Шотки позволит по сравнению с прототипом повысить достаточно высокие выходные параметры последнего, а именно:

- выходную мощность примерно на 25-30 процентов,

- коэффициент усиления примерно на 2 дБ на частоте 10 ГГц,

- и соответственно коэффициент полезного действия.

Более того, значительно расширить функциональные возможности при применении его в качестве активного элемента в ряде устройств СВЧ диапазона, например усилителей мощности для активных фазированных антенных решеток (АФАР), где, как сказано выше, требуется высокая удельная мощность и высокий коэффициент полезного действия.

Источники информации

1. Патент РФ №2349987 МПК H01L 29/338 приоритет 17.07.07, опубл. 20.03.09.

2. Полевые транзисторы на арсениде галлия. Принципы работы и технология изготовления. Под ред. Д.В.Ди Лоренцо, Д.Д.Канделуола Перевод с английского под ред. Г.В.Петрова, М., «Радио и связь», 1988 г., стр.118.

3. «Мощные GaAs полевые СВЧ транзисторы со смещенным затвором», авторы Лапин В.Г., Красник В.А., Петров К.И., Темнов A.M. Одиннадцатая Международная конференция «СВЧ-техника и телекоммуникационные технологии». Сборник материалов конференции 10-14 сентября 2001 г., Севастополь, Крым, Украина, стр.135.

4. Патент РФ №2307424 МПК H01L 29/812, приоритет 02.12.05, опубл. 27.09.07.

Похожие патенты RU2393589C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ СВЧ ПОЛЕВОГО ТРАНЗИСТОРА С БАРЬЕРОМ ШОТКИ 2011
  • Лапин Владимир Григорьевич
  • Петров Константин Игнатьевич
  • Кувшинова Наталья Александровна
RU2465682C1
МОЩНЫЙ СВЧ ПОЛЕВОЙ ТРАНЗИСТОР С БАРЬЕРОМ ШОТКИ 2005
  • Лапин Владимир Григорьевич
  • Петров Константин Игнатьевич
  • Темнов Александр Михайлович
RU2307424C1
СПОСОБ ИЗГОТОВЛЕНИЯ СВЧ ПОЛЕВОГО ТРАНЗИСТОРА С БАРЬЕРОМ ШОТКИ 2008
  • Лапин Владимир Григорьевич
  • Петров Константин Игнатьевич
  • Темнов Александр Михайлович
RU2361319C1
ПОЛЕВОЙ ТРАНЗИСТОР СВЧ С БАРЬЕРОМ ШОТТКИ 2021
  • Лапин Владимир Григорьевич
  • Рогачев Илья Александрович
  • Лукашин Владимир Михайлович
  • Добров Александр Вадимович
RU2784754C1
МОЩНЫЙ ПОЛЕВОЙ ТРАНЗИСТОР СВЧ 2022
  • Лапин Владимир Григорьевич
  • Лукашин Владимир Михайлович
  • Пашковский Андрей Борисович
  • Куликова Ирина Владимировна
  • Приступчик Никита Константинович
RU2787552C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛЕВОГО ТРАНЗИСТОРА СВЧ С БАРЬЕРОМ ШОТТКИ 2022
  • Лапин Владимир Григорьевич
  • Лукашин Владимир Михайлович
  • Котекин Роман Александрович
  • Рогачев Илья Александрович
  • Добров Александр Вадимович
RU2793658C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТРАНЗИСТОРА СВЧ С УПРАВЛЯЮЩИМ ЭЛЕКТРОДОМ Т-ОБРАЗНОЙ КОНФИГУРАЦИИ СУБМИКРОННОЙ ДЛИНЫ 2009
  • Антонова Нина Евгеньевна
  • Земляков Валерий Евгеньевич
  • Красник Валерий Анатольевич
  • Снегирев Владислав Петрович
RU2390875C1
МОЩНЫЙ ПОЛЕВОЙ ТРАНЗИСТОР СВЧ 2011
  • Воробьев Антон Алексеевич
  • Галдецкий Анатолий Васильевич
  • Лапин Владимир Григорьевич
RU2463685C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПЛЕНКИ ДЛЯ ПОЛУПРОВОДНИКОВЫХ СТРУКТУР ЭЛЕКТРОННОЙ ТЕХНИКИ 2010
  • Галанихин Александр Васильевич
  • Галанихин Павел Александрович
  • Лапин Владимир Григорьевич
  • Петров Константин Игнатьевич
RU2419176C1
ПОЛЕВОЙ ТРАНЗИСТОР С БАРЬЕРОМ ШОТКИ 2020
  • Богданов Сергей Александрович
  • Богданов Юрий Михайлович
  • Лапин Владимир Григорьевич
  • Лукашин Владимир Михайлович
  • Пашковский Андрей Борисович
  • Журавлев Константин Сергеевич
RU2743225C1

Иллюстрации к изобретению RU 2 393 589 C1

Реферат патента 2010 года МОЩНЫЙ СВЧ ПОЛЕВОЙ ТРАНЗИСТОР С БАРЬЕРОМ ШОТКИ

Изобретение относится к электронной технике. Мощный СВЧ полевой транзистор с барьером Шотки содержит полуизолирующую подложку арсенида галлия с активным слоем, гребенку из чередующейся, по меньшей мере, более одной последовательности единичных электродов истока, затвора, стока. Между парами единичных электродов исток-сток расположены области полуизолирующего арсенида галлия, а в парах единичных электродов исток-сток расположены каналы с канавками, в последних расположены единичные электроды затвора. Единичные электроды затвора расположены асимметрично в сторону единичных электродов истока, одноименные единичные электроды истока, затвора, стока соединены электрически. При этом полевой транзистор с барьером Шотки, согласно изобретению, в канале каждой из пар единичных электродов исток-сток со стороны единичного электрода истока дополнительно содержит диэлектрический слой, имеющий низкую диэлектрическую проницаемость, толщиной, равной 0,15-0,25 мкм, а каждый из единичных электродов затвора относительно его боковой поверхности со стороны единичного электрода стока выполнен по высоте с разным размером поперечного сечения в сторону единичного электрода истока, верхним - длинным и нижним - коротким, примыкающим к поверхности канавки канала, при этом размер поперечного сечения верхней - длинной части превышает размер поперечного сечения нижней - короткой части на 0,5-0,8 мкм, высота последней равна толщине дополнительного диэлектрического слоя. При этом с одной стороны две взаимно перпендикулярные поверхности дополнительного диэлектрического слоя относительно его толщины непосредственно примыкают по ширине единичного электрода затвора к вертикальной поверхности его нижней - короткой части и к горизонтальной превышающей поверхности верхней - длинной части соответственно, а с противоположной стороны упомянутые поверхности расположены вровень с краем верхней - длинной части единичного электрода затвора либо перекрывают от этого края канал с единичным электродом истока не более 4 мкм. Изобретение обеспечивает повышение выходной мощности, коэффициента усиления по мощности и коэффициента полезного действия. 3 з.п. ф-лы, 2 ил., 1 табл.

Формула изобретения RU 2 393 589 C1

1. Мощный СВЧ полевой транзистор с барьером Шотки, содержащий полуизолирующую подложку арсенида галлия с активным слоем, гребенку из чередующейся, по меньшей мере, более одной последовательности единичных электродов истока, затвора, стока, при этом между парами единичных электродов исток-сток расположены области полуизолирующего арсенида галлия шириной не менее 4 мкм, а в парах единичных электродов исток-сток расположены каналы с канавками шириной и глубиной, равной 0,9-1,3 мкм и не более 0,3 мкм соответственно, в последних расположены единичные электроды затвора, при этом единичные электроды затвора расположены асимметрично в сторону единичных электродов истока, одноименные единичные электроды истока, затвора, стока соединены электрически, отличающийся тем, что полевой транзистор с барьером Шотки в канале каждой из пар единичных электродов исток-сток со стороны единичного электрода истока дополнительно содержит диэлектрический слой, имеющий низкую диэлектрическую проницаемость толщиной, равной 0,15-0,25 мкм, а каждый из единичных электродов затвора относительно его боковой поверхности со стороны единичного электрода стока выполнен по высоте с разным размером поперечного сечения в сторону единичного электрода истока, верхним - длинным и нижним - коротким, примыкающим к поверхности канавки канала, при этом размер поперечного сечения нижней - короткой части единичного электрода затвора равен 0,05-0,5 мкм, размер поперечного сечения верхней - длинной части превышает размер поперечного сечения нижней - короткой части на 0,5-0,8 мкм, высота последней равна толщине дополнительного диэлектрического слоя, при этом с одной стороны две взаимно перпендикулярные поверхности дополнительного диэлектрического слоя относительно его толщины непосредственно примыкают по ширине единичного электрода затвора к вертикальной поверхности его нижней - короткой части и к горизонтальной превышающей поверхности верхней - длинной части соответственно, а с противоположной стороны упомянутые поверхности расположены вровень с краем верхней - длинной части единичного электрода затвора либо перекрывают от этого края канал с единичным электродом истока не более 4 мкм.

2. Мощный СВЧ полевой транзистор с барьером Шотки по п.1, отличающийся тем, что активным слоем может быть слой n-типа проводимости арсенида галлия либо гетероструктура с двумерным электронным газом.

3. Мощный СВЧ полевой транзистор с барьером Шотки по п.1, отличающийся тем, что дополнительный диэлектрический слой с низкой диэлектрической проницаемостью может быть выполнен из двуокиси кремния либо нитрида кремния.

4. Мощный СВЧ полевой транзистор с барьером Шотки по п.1, отличающийся тем, что он может иметь контактный слой толщиной 0,05-0,2 мкм, выполненный на активном слое.

Документы, цитированные в отчете о поиске Патент 2010 года RU2393589C1

МОЩНЫЙ СВЧ ПОЛЕВОЙ ТРАНЗИСТОР С БАРЬЕРОМ ШОТКИ 2005
  • Лапин Владимир Григорьевич
  • Петров Константин Игнатьевич
  • Темнов Александр Михайлович
RU2307424C1
СПОСОБ ИЗГОТОВЛЕНИЯ МОЩНЫХ СВЧ ПОЛЕВЫХ ТРАНЗИСТОРОВ С БАРЬЕРОМ ШОТТКИ 2002
  • Голиков А.В.
  • Кагадей В.А.
  • Проскуровский Д.И.
  • Ромась Л.М.
  • Широкова Л.С.
RU2227344C2
Полевой транзистор 1981
  • Овчаренко В.И.
  • Портнягин М.А.
SU1097139A1
СА 921175 А1, 13.02.1973.

RU 2 393 589 C1

Авторы

Лапин Владимир Григорьевич

Петров Константин Игнатьевич

Темнов Александр Михайлович

Даты

2010-06-27Публикация

2009-05-25Подача