Изобретение относится к области магнитных измерений и может быть использовано в приборах измерения амплитуды напряженности магнитного поля, в т.ч. для аттестации рабочих мест на соответствие установленным требованиям.
Известен способ измерения магнитного поля с помощью феррозонда, в котором используются нелинейные магнитные свойства сердечников (Афанасьев Ю.В., Студенцов В.Н., Хорев В.Н., Чечурина Е.Н., Щелкин А.П. Магнитометрические преобразователи, приборы, установки. - Л.: Энергия. - 1972). Недостатком известного технического решения является высокое энергопотребление, делающее его малопригодным для портативных малогабаритных приборов.
Наиболее близким к предлагаемому техническим решением, выбранным в качестве прототипа, является способ измерения магнитного поля (Ломаев Г.В., Мерзляков Ю.М. Эффект Баргаузена. - Ижевск: Изд-во ИжГТУ, 2004. - 164 с.), заключающийся в том, что чувствительный элемент с прямоугольной петлей гистерезиса периодически перемагничивают линейно изменяющимся магнитным полем, регистрируют скачки перемагничивания и по интервалу времени между скачками определяют величину напряженности измеряемого поля.
Недостатком известного технического решения является высокое энергопотребление, обусловленное необходимостью периодического перемагничивания полем, превышающим максимальное измеряемое поле, достаточное для усреднения флуктуации поля старта число раз.
Предлагаемое изобретение направлено на сокращение времени измерения и снижение энергопотребления при измерении магнитного поля.
Указанный результат достигается за счет того, что линейно нарастающее поле используется однократно, а многократное перемагничивание для усреднения флуктуации поля старта производится существенно меньшим по амплитуде по сравнению с измеряемым полем высокочастотным магнитным полем, в результате чего длительность процесса измерения существенно уменьшается.
Сущность изобретения состоит в том, что в способе измерения напряженности магнитного поля, при котором на чувствительный элемент с прямоугольной петлей гистерезиса воздействуют линейно нарастающим магнитным полем и регистрируют скачки перемагничивания, дополнительно воздействуют переменным высокочастотным магнитным полем. Изменение линейно нарастающего магнитного поля прекращается после достижения равенства интервалов между скачками перемагничивания от воздействия высокочастотного магнитного поля и по величине достигнутого в этот момент линейно нарастающего магнитного поля определяют измеряемое поле.
Воздействие на чувствительный элемент с прямоугольной петлей гистерезиса переменным высокочастотным полем позволяет определить момент выхода в режим компенсации измеряемого поля, тем самым, в отличие от прототипа, обеспечить измерение за счет однократного воздействия линейно нарастающим полем. При этом многократное перемагничивание для усреднения флуктуации поля старта производится существенно меньшим по амплитуде по сравнению с измеряемым полем высокочастотным магнитным полем, в результате чего длительность процесса измерения существенно уменьшается. Прекращение изменения линейно нарастающего поля в момент равенства интервалов позволяет максимально быстро определить режим компенсации и минимизировать время измерения при сохранении точности, свойственной прототипу. В результате чего достигается уменьшение энергопотребления.
Сущность изобретения поясняется чертежами, где на фиг.1 изображена диаграмма воздействия на образец результирующего поля Hрез в процессе измерения относительно характеристики перемагничивания чувствительного элемента, поясняющая принцип измерения; на фиг.2 и фиг.3 изображены временные диаграммы формирования сигналов от скачков перемагничивания высокочастотным переменным магнитным полем при условии, что поле компенсации Hк меньше Hизм (фиг.2) и Hк=Hизм (фиг.3).
Предлагаемый способ измерения напряженности магнитного поля осуществляют следующим образом.
В исходном состоянии чувствительный элемент с прямоугольной петлей гистерезиса, которым является магнитный компаратор, намагничен измеряемым полем Hизм, направленным вдоль оси чувствительного элемента, и для перемагничивания его в противоположное направление необходимо приложить обратное поле, равное по амплитуде Hизм+Hс (фиг.1), где Нс и -Нс - поля старта чувствительного элемента. В соответствие с предложенным способом на чувствительный элемент воздействуют суммой линейно нарастающего поля компенсации Hк и высокочастотного переменного магнитного поля Hпер, вследствие чего результирующее поле Hрез=Hизм-(Hк+Hпер) изменяется со временем и, по достижении момента, когда Hк+Hпер по амплитуде достигает Hизм+Hс, происходит первый скачок намагниченности. Вследствие того, что Hпер по амплитуде больше Нc, то при дальнейшем изменении поля компенсации Hк (на фиг.2 показано пунктирной линией) начинают периодически повторяться скачки перемагничивания чувствительного элемента. Временные интервалы T1 и Т2 определяются и сравниваются между собой, при Hк<Hизм в силу асимметрии переменного магнитного поля относительно измеряемого поля интервалы T1 и Т2 не равны (фиг.2).
По достижении равенства Hизм=Hк интервалы T1 и Т2 между скачками становятся равными и рост Hк прекращают (фиг.3). Величину поля компенсации Hк в этот момент фиксируют и определяют по ней измеряемое поле Hизм.
Пример выполнения способа. Испытания предлагаемого способа проводили на доработанном варианте прибора ИГМП-3, который представляет собой трехкомпонентный портативный магнитометр на основе феррозондов на бистабильных элементах из аморфного сплава (Ломаев Г.В., Васильев М.Ю., Кочетова Д.В. Трехкомпонентный портативный магнитометр на основе феррозондов на бистабильных элементах из аморфного сплава // Дефектоскопия. - 2001. - №3. - С.38-44). В качестве чувствительных элементов в приборе используются бистабильные сердечники из аморфного микропровода на основе Fe-Co-сплавов (Ломаев Г.В., Каримова Г.В. Датчики Баргаузена. - Ижевск: Изд-во ИжГТУ, 2008. - 368 с.). Доработка прибора включала замену генератора линейно изменяющегося периодического тока перемагничивания на генератор линейно нарастающего тока и генератор высокочастотного переменного тока перемагничивания частотой 50 кГц, выходные сигналы которых суммировались. Программа микропроцессора, используемого в приборе, была доработана на предмет возможности измерения и сравнения временных интервалов между скачками перемагничивания и формирования сигнала остановки роста линейно нарастающего тока в момент равенства временных интервалов. При реализации способа прототипа на одно измерение затрачивалось 10 с (время измерения определяется в т.ч. небходимостью усреднения результатов, разброс между которыми обусловлен флуктуациями поля старта). При реализации предлагаемого способа время измерения сократилось до 0,5 с, соответственно энергозатраты на проведение одинакового числа измерений сократились в 15 раз при сохранении необходимой точности измерений.
Таким образом, предлагаемое техническое решение позволяет обеспечить сокращение времени измерения и снижение энергопотребления.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ АМПЛИТУДЫ ДВУХПОЛЯРНОГО ИМПУЛЬСА МАГНИТНОГО ПОЛЯ | 2013 |
|
RU2533345C1 |
БЫСТРОДЕЙСТВУЮЩЕЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ НАПРЯЖЕННОСТИ МАГНИТНОГО ПОЛЯ | 1998 |
|
RU2147752C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ НАПРЯЖЕННОСТИ МАГНИТНОГО ПОЛЯ | 1998 |
|
RU2154280C2 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ НАПРЯЖЕННОСТИ МАГНИТНОГО ПОЛЯ | 1998 |
|
RU2155968C2 |
ДАТЧИК МАГНИТНОГО ПОЛЯ | 1992 |
|
RU2079147C1 |
Суммирующий измерительный преобразователь электрических сигналов с гальваническим разделением между цепями | 1982 |
|
SU1150564A1 |
Способ магнитошумовой структуроскопии | 1978 |
|
SU728072A1 |
Способ измерения релаксационной коэрцитивной силы ферромагнитных образцов | 1979 |
|
SU788064A1 |
Способ магнитошумовой структуроскопии | 1980 |
|
SU894540A1 |
Способ магнитного контроля, основанныйНА эффЕКТЕ бАРКгАузЕНА | 1979 |
|
SU800915A1 |
Изобретение относится к области магнитных измерений и предназначено для использования в приборах измерения амплитуды напряженности магнитного поля, в т.ч. для аттестации рабочих мест на соответствие установленным требованиям. Предложенный способ определения магнитного поля заключается в том, что на чувствительный элемент с прямоугольной петлей гистерезиса, в исходном состоянии намагниченный определяемым магнитным полем, воздействуют суммой линейно нарастающего магнитного поля, а также высокочастотного переменного магнитного поля с амплитудой, превышающей поле старта. Регистрируют скачки перемагничивания, прекращают рост линейно нарастающего магнитного поля после достижения равенства интервалов времени между скачками перемагничивания от воздействия высокочастотного магнитного поля. По величине достигнутого в этот момент линейно нарастающего магнитного поля определяют магнитное поле. Технический результат направлен на снижение энергопотребления за счет снижения времени измерений. 3 ил.
Способ определения магнитного поля, заключающийся в том, что на чувствительный элемент с прямоугольной петлей гистерезиса, в исходном состоянии намагниченный определяемым магнитным полем, воздействуют суммой линейно нарастающего магнитного поля и высокочастотного переменного магнитного поля с амплитудой, превышающей поле старта, и регистрируют скачки перемагничивания, прекращают рост линейно нарастающего магнитного поля после достижения равенства интервалов времени между скачками перемагничивания от воздействия высокочастотного магнитного поля и по величине достигнутого в этот момент линейно нарастающего магнитного поля определяют магнитное поле.
Способ определения начальной магнитной проницаемости | 1986 |
|
SU1465851A1 |
US 6724184 B1, 20.04.2004 | |||
Способ приготовления эмульсирующих минеральных масел | 1927 |
|
SU10534A1 |
US 2008284446 A1, 20.11.2008. |
Авторы
Даты
2010-07-20—Публикация
2009-05-13—Подача