СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ СТРОНЦИЯ-90 В ЖИДКОСТЯХ Российский патент 2010 года по МПК G01T1/178 

Описание патента на изобретение RU2397511C1

Изобретение предназначено для мониторинга в реальном времени содержания стронция-90 в жидкостях с чувствительностью не хуже 1 Бк/литр, что найдет применение на объектах государственного значения, таких как объекты атомной промышленности, включая АЭС, хранилища отработанного ядерного топлива, места захоронения радиоактивных отходов, предприятия атомной промышленности и машиностроения. Кроме того, заинтересованность в подобной разработке имеется у экологических служб городов, особенно в техногенно опасных регионах.

Используемые в настоящее время методы определения содержания стронция-90 в жидкостях без предварительной подготовки образцов (выпаривание, химическое обогащение) обеспечивают чувствительность не лучше 15 Бк/л. Выпускаемый серийно бета-спектрометр СЕБ-01-150 (АКП г.Киев) имеет чувствительность 15 Бк/л за время измерений 10000 сек, вес более 200 кг.

Определение содержания стронция-90, основанное на методах ионной хроматографии (J.Cobb, P.Warwick at al., Determination of strontium-90 in milk samles using a controlled precipitation clean-up step prior to ion-chromatography. Science of the Total Environment, 173-174 (1995) 179-186) или масс-спектроскопии, требует наличия дорогих стационарных лабораторных установок и предварительной подготовки образцов.

Использование черенковского излучения для регистрации бета-распадных электронов также требует либо приготовления образцов (D.D. Rao, S.T. Mehendarge at al., Application of Cherenkov radiation counting for determination of Sr-90 in environmental samples. Journal of Environmental Radioactivity, 48 (2000) 49-57) или принятия дополнительных мер по защите детектора от внешнего гамма-излучения и постоянного контроля в широком диапозоне оптической прозрачности исследуемого объема жидкости (A. Chernyaev, I. Gaponov, A. Kazennov, Direct methods for radionuclides measurement in water environmental. Journal of Environmental Radioactivity, 72 (2004) 187-194).

Известны также способы определения содержания стронция-90 в жидкостях и других природных объектах по дочернему элементу иттрию-90 (патенты РФ №1823652, 2139534, 2166775), в которых предусмотрены приготовление композиций, содержащих стронций и иттрий, различными химическими способами, измерение скорости счета и активности иттрия-90 и пересчет активности иттрия на активность стронция-90. Все эти способы технологически сложны и вследствие этого требуют значительного времени определения активности стронция-90, имеют низкую достоверность.

За прототип выбран способ определения содержания стронция-90 в природных и промышленных объектах, включающий приготовление раствора стронция-90, введение в него композиции, способной извлекать иттрий-90, приготовление счетного препарата, измерение скорости счета бета-излучения иттрия-90, определение количества иттрия-90 и пересчет количества иттрия-90 на количество стронция-90 (патент РФ №2166775, опубл. 10.05.2001). Недостатком этого способа, также как и указанных выше, является его длительность, низкая достоверность.

Техническим результатом изобретения является определение в реальном времени содержания стронция-90 в жидкостях с чувствительностью не хуже 1 Бк/литр.

Для достижения указанного результата предложен способ определения содержания стронция-90 в жидкостях, заключающийся в измерении скорости счета бета-излучения иттрия-90, определении количества иттрия-90 и пересчете количества иттрия-90 на количество стронция-90, при этом одновременно и независимо измеряют бета-излучение иттрия-90 и фоновые события от электронов комптоновского рассеяния гамма-квантов в исследуемом объеме жидкости сцинтилляционным методом и определяют по разнице счета количество стронция-90.

В основу изобретения положен принцип регистрации бета-распадных электронов радионуклида иттрия-90, концентрация которого находится в равновесии с концентрацией стронция-90. При одновременной и независимой регистрации бета-излучения иттрия-90 и фоновых событий непосредственно в контролируемом объеме жидкости повышается достоверность измерений. При этом измерения проводят непосредственно в исследуемом объеме жидкости. Измерения проводят равномерно по исследуемому объему жидкости.

На фиг.1 схематично показано расположение детектирующих элементов для проведения измерений, где 1 - стержень из сцинтиллирующего полистирола, 2 - защитный экран из полистирола. На фиг.2 показано выполнение детектора, который должен в минимально достаточном исполнении состоять из двух сборок бета-стержней и двух сборок гамма-стержней.

Способ осуществляется следующим образом.

В качестве детектирующих сцинтилляционных элементов для измерения излучения предложены стержни 1 из сцинтиллирующего полистирола. Предложен следующий вариант реализации способа измерения.

Стержни делятся на две равные по числу группы (см. фиг.1). Стержни каждой группы одинаково и равномерно заполняют объем детектора. Геометрические размеры стержней и расстояние между ними рассчитывается в каждом конкретном случае. Если теперь стержни 1 какой-либо группы поместить в защитные экраны 2 из чистого полистирола с толщиной, достаточной для поглощения бета-электронов, то эта группа (назовем ее гамма-детектором) станет не чувствительной к бета-излучению из исследованной жидкости. Оставшаяся часть (бета-детектор) регистрирует и гамма- и бета-излучение. Чувствительность обоих детекторов к гамма-излучению будет одинаковой, так как сечения взаимодействия гамма-квантов в воде и полистироле в интересующем нас диапазоне энергий практически одинаковые, а длина поглощения гамма-квантов в детекторе более чем на порядок превышает постоянную решетки «а». По разнице измерений двух групп стержней мы определяем эффект, связанный с бета-излучением иттрия. Детектирующие элементы 1 подсоединены через ФЭУ к блоку индикации данных (не показаны), обработка измерений и пересчет содержания стронция-90 проводится по любой известной методике.

Расчеты показали, что для определения количества стронция-90 в воде за время измерения 1000 секунд с чувствительностью 1 Бк/л достаточно четырех групп стержней 1 по 35 штук в каждой группе (две группы стержней без защитного экрана 2 и две группы стержней с защитными экранами 2, например, как показано на фиг.2), их общий занимаемый объем составит ~40 л.

Таким образом, предлагаемый способ позволит с высокой точностью и без предварительного изготовления образцов проводить измерения содержания стронция-90 в жидкостях в режиме реального времени, что обеспечит его мониторинг на АЭС, других промышленных и природных объектах, где необходим экспресс-анализ радиоактивной обстановки.

Похожие патенты RU2397511C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ СТРОНЦИЯ-90 В ПРИРОДНЫХ И СТОЧНЫХ ВОДАХ (ВАРИАНТЫ) 2022
  • Воронина Анна Владимировна
  • Белоконова Надежда Вадимовна
  • Суетина Анна Константиновна
RU2796325C1
СПОСОБ ИЗМЕРЕНИЯ УДЕЛЬНОЙ АКТИВНОСТИ СТРОНЦИЯ-90 В ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ 1995
  • Кузьмин Эдуард Викторович
  • Корниенко Михаил Гаврилович
RU2094822C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ТОРИЯ-234 В МОРСКИХ ДОННЫХ ОТЛОЖЕНИЯХ 2014
  • Гулин Сергей Борисович
  • Сидоров Илья Геннадьевич
  • Горелов Юрий Сергеевич
RU2541450C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ РАДИОАКТИВНЫХ ВЕЩЕСТВ 2001
  • Стрепетов А.Н.
RU2217777C2
Бета- и гамма-спектрометр 1979
  • Чуркин В.Н.
SU812093A1
СПОСОБ БЕЗЫНЕРЦИОННОГО КОНТРОЛЯ ПАРОСОДЕРЖАНИЯ В ТЕПЛОНОСИТЕЛЕ ЯДЕРНОГО РЕАКТОРА 1999
  • Постников В.В.
RU2167457C2
СПЕКТРОЗОНАЛЬНЫЙ ОДНОКООРДИНАТНЫЙ ДЕТЕКТОР РЕНТГЕНОВСКОГО И ГАММА-ИЗЛУЧЕНИЙ 2014
  • Микеров Виталий Иванович
  • Кошелев Александр Павлович
RU2579157C1
СПОСОБ РЕНТГЕНОСПЕКТРАЛЬНОГО ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОГО АТОМНОГО НОМЕРА МАТЕРИАЛА И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЭФФЕКТИВНОГО АТОМНОГО НОМЕРА МАТЕРИАЛА 2010
  • Петрова Лариса Николаевна
  • Брытов Игорь Александрович
  • Гоганов Андрей Дмитриевич
  • Калинин Борис Дмитриевич
  • Плотников Роберт Исаакович
RU2432571C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АБСОЛЮТНОЙ УДЕЛЬНОЙ АКТИВНОСТИ СОДЕРЖИМОГО КОНТЕЙНЕРА С РАДИОАКТИВНЫМИ ОТХОДАМИ И ПАРЦИАЛЬНЫХ УДЕЛЬНЫХ АКТИВНОСТЕЙ ОТДЕЛЬНЫХ РАДИОНУКЛИДОВ 2014
  • Дрейзин Валерий Элезарович
  • Сиделева Наталья Владимировна
  • Логвинов Дмитрий Иванович
  • Гримов Александр Александрович
RU2571309C1
СПОСОБ ГАММА-РАДИОГРАФИЧЕСКОЙ ИНТРОСКОПИИ 2018
  • Игнатьев Олег Валентинович
  • Горбунов Максим Александрович
  • Морозов Сергей Геннадьевич
  • Купчинская Евгения Александровна
  • Купчинский Антон Вячеславович
  • Пулин Алексей Александрович
  • Дудин Сергей Владимирович
  • Фофанов Дмитрий Алексеевич
RU2680849C1

Иллюстрации к изобретению RU 2 397 511 C1

Реферат патента 2010 года СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ СТРОНЦИЯ-90 В ЖИДКОСТЯХ

Изобретение предназначено для мониторинга в реальном времени содержания стронция-90 в жидкостях с чувствительностью не хуже 1 Бк/литр, что найдет применение на объектах атомной промышленности - АЭС, хранилищах отработанного ядерного топлива, местах захоронения радиоактивных отходов. Технический результат - определение в реальном времени содержания стронция-90 в жидкостях с чувствительностью не хуже 1 Бк/литр. Для этого одновременно и независимо измеряют бета-излучение иттрия-90 и фоновые события от электронов комптоновского рассеяния гамма-квантов в исследуемом объеме жидкости сцинтилляционным методом, определяют скорость счета бета-излучения иттрия-90 как разницу указанных измерений, затем определяют количество иттрия-90 и пересчитывают количества иттрия-90 на количество стронция-90. 2 ил.

Формула изобретения RU 2 397 511 C1

Способ определения содержания стронция-90 в жидкостях, заключающийся в измерении скорости счета бета-излучения иттрия-90, определении количества иттрия-90 и пересчете количества иттрия-90 на количество стронция-90, отличающийся тем, что одновременно и независимо измеряют бета-излучение иттрия-90 и фоновые события от комптоновского рассеяния гамма квантов в исследуемом объеме жидкости спинтилляционным методом и определяют по разнице счета количество стронция-90.

Документы, цитированные в отчете о поиске Патент 2010 года RU2397511C1

СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ СТРОНЦИЯ-90 В ПРИРОДНЫХ И ПРОМЫШЛЕННЫХ ОБЪЕКТАХ 1999
  • Соболев И.А.
  • Тимофеева А.В.
  • Минигалиев Р.М.
  • Лукьянова Р.Г.
  • Шуркус О.В.
RU2166775C1
Бета- и гамма-спектрометр 1979
  • Чуркин В.Н.
SU812093A1
Способ определения стронция-90 в морской воде 1982
  • Павлоцкая Ф.И.
  • Хитров Л.М.
  • Москвин А.И.
  • Блохина М.И.
  • Степанец О.В.
  • Соловьева Г.Ю.
SU1095555A1
US 7138643 В2, 21.11.2006.

RU 2 397 511 C1

Авторы

Мартемьянов Владимир Петрович

Тарасенков Валентин Григорьевич

Турбин Евгений Вячеславович

Алешин Виктор Иванович

Даты

2010-08-20Публикация

2009-08-06Подача