СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА Российский патент 2010 года по МПК C23C14/24 C23C14/06 

Описание патента на изобретение RU2402636C1

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Известен способ получения износостойкого покрытия для режущего инструмента (РИ), при котором на его поверхность вакуумно-дуговым методом наносят покрытие из нитрида титана (TiN) или карбонитрида титана (TiCN) (см. Табаков В.П. Работоспособность режущего инструмента с износостойкими покрытиями на основе сложных нитридов и карбонитридов титана. Ульяновск: УлГТУ, 1998. 122 с). К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе покрытия, обладающие хорошей адгезией к инструментальному материалу, имеют относительно низкую твердость и уровень сжимающих напряжений либо имеют высокую микротвердость, но недостаточную прочность сцепления с инструментальной основой. В результате этого покрытие легко подвергается абразивному износу, в нем быстро зарождаются и распространяются трещины, приводящие к разрушению покрытия, что снижает стойкость РИ с покрытием.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ, включающий вакуумно-плазменное нанесение многослойного покрытия, состоящего из нижнего слоя нитрида титана TiZrN и верхнего слоя карбонитрида титана-циркония TiZrCN (см. Ермолаев А.А. Повышение работоспособности твердосплавного инструмента при непрерывном точении на основе разработки многослойных покрытий. Диссертация на соискание ученой степени кандидата технических наук. Специальность 05.03.01 - Технологии и оборудование механической и физико-технической обработки), принятый за прототип.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что в известном способе многослойное покрытие содержит слои, имеющие низкие микротвердость, прочность сцепления друг с другом, износостойкость и стойкость к диффузионному и коррозионно-окислительному износу. В результате покрытие плохо сопротивляется процессам износа и разрушения и быстро разрушается при резании.

Повышение в последнее время стоимости металлорежущего инструмента и ужесточение требований к точности обрабатываемых деталей сделало еще более актуальной проблему повышения стойкости РИ. Основной причиной износа РИ является разупрочнение в результате действия диффузионных и коррозионно-окислительных процессов, а также образование микротрещин. Одним из путей повышения стойкости и работоспособности РИ с покрытием является нанесение покрытий многослойного типа на основе сложнолегированных материалов. Наличие в покрытии сложнолегированных слоев, обладающих высокой термодинамической стабильностью, позволяет снизить интенсивность физико-химических процессов износа покрытия и повысить стойкость РИ. Для повышения прочности сцепления слоев друг с другом целесообразно включать в их состав различные элементы.

Технический результат - повышение работоспособности РИ и качества обработки.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе на рабочие поверхности РИ вакуумно-дуговым методом наносится двухслойное покрытие. Особенность заявляемого способа заключается в том, что в качестве нижнего слоя наносят сложный нитрид титана, циркония и железа, а в качестве верхнего слоя наносят сложный нитрид титана, циркония и молибдена, при этом нанесение покрытия осуществляют с применением трех катодов, расположенных в горизонтальной плоскости, из которых два противоположных содержат: первый - вставку из нержавеющей стали 12Х18Н10Т, второй - вставку из молибдена, а расположенный между ними катод содержит вставку из циркония, причем при нанесении верхнего и нижнего слоев используют поочередно катоды со вставками из нержавеющей стали и молибдена совместно с катодом, содержащим вставку из циркония. Нижний слой обладает повышенной прочностью сцепления с инструментальной основой, а верхний - повышенной микротвердостью и износостойкостью. При этом оба слоя состоят из химически близких материалов, что повышает прочность их связи.

Компоновка установки для нанесения покрытия включает три составных катода с корпусами из титана ВТ1-0, первый со вставкой из нержавеющей стали 12Х18Н10Т, второй со вставкой из молибдена, расположенные напротив друг друга, и третий со вставкой из циркония, расположенный между первыми двумя катодами. При осаждении нижнего слоя используется катод со вставкой из нержавеющей стали 12Х18Н10Т совместно с катодом со вставкой из циркония с целью получения слоя TiZrFeN, при осаждении верхнего слоя используют катод со вставкой из молибдена также совместно с катодом со вставкой из циркония с целью получения слоя TiZrMoN. Использование в качестве материалов слоев сложных нитридов TiZrFeN и TiZrMoN обеспечивает высокую стойкость к окислительному и диффузионному износу, а также высокую износостойкость, а применение в качестве материалов обоих слоев схожих многоэлементных материалов способствует повышению прочности связи слоев покрытия.

Сущность изобретения заключается в следующем. В процессе резания РИ работает в условиях окислительного и диффузионного износа, а также воздействия адгезионно-усталостных процессов и трещин. Для снижения интенсивности процессов износа и разрушения покрытия и самого инструмента наиболее эффективны покрытия сложного состава, а в условиях трещинообразования еще большую эффективность показывают многослойные покрытия со слоями сложного состава. При этом увеличение количества легирующих элементов в составе покрытия приводит к росту его твердости и износостойкости, а также термодинамической устойчивости. Поэтому целесообразно применение двухслойного покрытия, в котором верхний слой должен обладать наивысшими износо- и трещиностойкостью, а нижний в первую очередь должен обеспечивать высокую прочность сцепления с инструментальной основой. Для получения высокой прочности сцепления слоев в их состав входят одинаковые химические элементы.

Для экспериментальной проверки заявленного способа было нанесено покрытие-прототип с соотношением слоев, соответствующим оптимальному значению, указанному в известном способе, а также двухслойное покрытие по предлагаемому способу. Покрытия наносили на твердосплавные пластины в вакуумной камере установки «Булат-6», снабженной тремя вакуумно-дуговыми катодами, расположенными горизонтально в одной плоскости. Покрытия наносили после предварительной ионной очистки.

Ниже приведен конкретный пример осуществления предлагаемого способа (покрытие TiZrFeN-TiZrMoN).

Твердосплавные пластины МК8 (размером 4,7×12×12 мм) промывают в ультразвуковой ванне, протирают ацетоном, спиртом и устанавливают на поворотном устройстве в вакуумной камере установки «Булат-6», снабженной тремя катодами, расположенными горизонтально в одной плоскости. Камеру откачивают до давления 6,65·10-3 Па, включают поворотное устройство, подают на него отрицательное напряжение 1,1 кВ, включают один катод и при токе дуги 100 А производят ионную очистку и нагрев пластин до температуры 560-580°С. Ток фокусирующей катушки 0,4 А. Затем снижают отрицательное напряжение до 140 В, ток катушек до 0,3 А, включают два катода, со вставкой из нержавеющей стали и со вставкой из циркония, подают в камеру реакционный газ - азот и осаждают покрытие в течение 12 мин при давлении газа (5-6)·10-1 Па. Затем при напряжении до 140 В, токе фокусирующих катушек до 0,3 А выключают катод со вставкой из нержавеющей стали. В камеру подается реакционный газ (давление (5-6)·10-1 Па) - азот, включают катод со вставкой из молибдена и осаждают второй слой покрытия в течение 24 мин. Затем отключают катоды, подачу реакционного газа, напряжение и вращение приспособления. Через 15-20 мин камеру открывают и извлекают инструмент с покрытием.

Стойкостные испытания проводили на токарно-винторезном станке 16К25 при обработке конструкционной стали 30ХГСА. Испытывали твердосплавные пластины марки МК8, обработанные по известному и предлагаемому способам. Критерием износа служила фаска износа по задней поверхности шириной 0,4 мм.

Таблица 1 Результаты испытаний РИ с покрытием № пп Материал покрытия Толщина слоев покрытия (нижний-верхний), мкм Hµ, ГПа К0 Стойкость, мин Примечание 1 2 3 4 5 6 7 Обрабатываемый материал - 30ХГСА, V=200 м/мин, S=0,3 мм/об, t=1,5 мм 1 TIN 6 21,2 0,70 29 Аналог 2 TiZrN-TiZrCN 2-4 33,4 0,51 67 Прототип 3 TiZrFeN-TiZrMoN 2-4 36,5 0,29 135 - 1. Нµ - микротвердость, ГПа (по Виккерсу). 2. К0 - коэффициент отслоения, уменьшение величины которого свидетельствует о росте прочности сцепления с инструментальной основой.

Как видно из приведенных в табл.1 данных, стойкость пластин, обработанных по предлагаемому способу, выше стойкости пластин, обработанных по способу-прототипу, примерно в 2 раза.

Похожие патенты RU2402636C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2009
  • Табаков Владимир Петрович
  • Циркин Алексей Валерьевич
  • Смирнов Максим Юрьевич
  • Сагитов Дамир Ильдарович
RU2400559C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2009
  • Табаков Владимир Петрович
  • Циркин Алексей Валерьевич
  • Смирнов Максим Юрьевич
  • Сагитов Дамир Ильдарович
RU2400560C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2009
  • Табаков Владимир Петрович
  • Циркин Алексей Валерьевич
  • Смирнов Максим Юрьевич
  • Сагитов Дамир Ильдарович
RU2400561C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2006
  • Табаков Владимир Петрович
  • Циркин Алексей Валерьевич
  • Чихранов Алексей Валерьевич
  • Смирнов Максим Юрьевич
  • Сергунин Дмитрий Сергеевич
RU2330106C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2006
  • Табаков Владимир Петрович
  • Циркин Алексей Валерьевич
  • Чихранов Алексей Валерьевич
  • Смирнов Максим Юрьевич
  • Сергунин Дмитрий Сергеевич
RU2330105C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2009
  • Табаков Владимир Петрович
  • Циркин Алексей Валерьевич
  • Смирнов Максим Юрьевич
  • Сагитов Дамир Ильдарович
RU2414536C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2009
  • Табаков Владимир Петрович
  • Циркин Алексей Валерьевич
  • Смирнов Максим Юрьевич
  • Сагитов Дамир Ильдарович
RU2402634C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2009
  • Табаков Владимир Петрович
  • Циркин Алексей Валерьевич
  • Смирнов Максим Юрьевич
  • Сагитов Дамир Ильдарович
RU2414527C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2009
  • Табаков Владимир Петрович
  • Циркин Алексей Валерьевич
  • Смирнов Максим Юрьевич
  • Сагитов Дамир Ильдарович
RU2414535C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2008
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
RU2363767C1

Реферат патента 2010 года СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ включает вакуумно-плазменное нанесение двухслойного покрытия, содержащего нижний слой из сложного нитрида титана, циркония и железа и верхний слой из сложного нитрида титана, циркония и молибдена. Нанесение покрытия осуществляют с использованием трех катодов, расположенных в горизонтальной плоскости. Корпуса катодов изготовлены из титанового сплава ВТ1-0 со вставкой. Первый катод выполнен со вставкой из нержавеющей стали, второй - со вставкой из молибдена, а третий, расположенный между ними, - со вставкой из циркония. При осаждении нижнего слоя используют катод со вставкой из нержавеющей стали совместно с катодом со вставкой из циркония. При осаждении верхнего слоя используют катод со вставкой из молибдена совместно с катодом со вставкой из циркония. Повышается работоспособность режущего инструмента и качество обработки. 1 табл.

Формула изобретения RU 2 402 636 C1

Способ получения многослойного покрытия для режущего инструмента, включающий вакуумно-плазменное нанесение двухслойного покрытия, содержащего нижний слой из сложного нитрида титана, циркония и железа и верхний слой, при этом нанесение покрытия осуществляют с использованием трех катодов, расположенных в горизонтальной плоскости, отличающийся тем, что в качестве верхнего слоя наносят сложный нитрид титана, циркония и молибдена, причем используют катоды, корпуса которых изготовлены из титанового сплава ВТ 1-0 со вставкой, причем первый катод выполнен со вставкой из нержавеющей стали, второй - со вставкой из молибдена и третий, расположенный между ними, - со вставкой из циркония, при этом при осаждении нижнего слоя используют катод со вставкой из нержавеющей стали совместно с катодом со вставкой из циркония, при осаждении верхнего слоя используют катод со вставкой из молибдена совместно с катодом со вставкой из циркония.

Документы, цитированные в отчете о поиске Патент 2010 года RU2402636C1

RU 2006135511 А, 20.04.2008
0
SU78201A1
RU 78209 U1, 20.11.2008
СПОСОБ РАЗРАБОТКИ РУДНЫХ МЕСТОРОЖДЕНИЙ ПОДЭТАЖНЫМ ОБРУШЕНИЕМ 2001
  • Фрейдин А.М.
  • Кореньков Э.Н.
  • Филиппов П.А.
  • Усков В.А.
  • Гайдин А.П.
RU2208162C1
US 5985469 A, 16.11.1999
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1

RU 2 402 636 C1

Авторы

Табаков Владимир Петрович

Циркин Алексей Валерьевич

Смирнов Максим Юрьевич

Сагитов Дамир Ильдарович

Даты

2010-10-27Публикация

2009-02-17Подача