ГОЛОГРАФИЧЕСКИЙ КОНЦЕНТРАТОР СОЛНЕЧНОЙ ЭНЕРГИИ Российский патент 2010 года по МПК F24J2/08 G02F1/00 

Описание патента на изобретение RU2403510C1

Изобретение относится к солнечной энергетике и может найти применение, например, для концентрации солнечного излучения на фотогальванические ячейки для повышения эффективности преобразования солнечного излучения в электричество.

Известен голографический плоский концентратор [1], состоящий из прозрачной пластины и отражающего голографического элемента, где прозрачная пластина является светопроводом для дифрагировавшего от голографического элемента излучения.

Наиболее близким по технической сущности к заявляемому изобретению является голографический плоский концентратор [2], предназначенный для сбора и концентрации оптического излучения, представляющий собой плоскую прозрачную пластину, прилегающий к нему голографический элемент и фотопреобразователь.

Указанные устройства не обеспечивают высокого уровня концентрации солнечного излучения.

Технической задачей изобретения является повышение эффективности концентрации падающего солнечного излучения.

Поставленная техническая задача решается тем, что голографический концентратор солнечной энергии, включающий плоскую прозрачную пластину с прилегающим к ее входной грани голографическим элементом, образованным двумя примыкающими голографическими решетками, углы дифракции которых имеют противоположные знаки, блок селективных линейных фотопреобразователей, дополнительно содержит последовательно оптически связанные двойную голографическую решетку, непосредственно прилегающую к выходной грани плоской прозрачной пластины, оптически связанную с голографическими решетками голографического элемента, и набор селективных цилиндрических линз Френеля; оптически связанный с блоком селективных линейных фотопреобразователей, причем длина каждого селектиного линейного фотопреобразователя больше длины соответствующей селективной цилиндрической линзы Френеля на величину, определяемую углом ее поля зрения, а ширина двойной голографической решетки равна удвоенной толщине плоской прозрачной пластины с прилегающим к ее входной грани голографическим элементом.

Совокупность указанных признаков позволяет повысить уровень концентрации падающего солнечного излучения по одной координате за счет многократного полного внутреннего отражения излучения в светопроводящей пластине после преобразования его пространственных характеристик на пропускающих фазовых голограммах, дальнейшего преобразования пространственных характеристик при однокоординатной фокусировке.

Сущность изобретения поясняется на чертеже, где:

1 - голографический элемент;

2 - плоская прозрачная пластина;

3 - первая голографическая решетка;

4 - вторая голографическая решетка;

5 - двойная голографическая решетка;

6 - набор селективных цилиндрических линз Френеля;

7 - блок селективных линейных фотопреобразователей.

Голографический концентратор солнечной энергии состоит из голографического элемента 1, образованного первой 3 и второй 4 примыкающими голографическими решетками, прилегающего ко входной грани плоской прозрачной пластины 2, двойной голографической решетки 5, непосредственно прилегающей к выходной грани плоской прозрачной пластины 2 и последовательно оптически связанной через набор селективных цилиндрических линз Френеля 6 с блоком селективных линейных фотопреобразователей 7, причем длина каждого селективного линейного фотопреобразователя больше длины соответствующей селективной цилиндрической линзы Френеля на величину, определяемую углом ее поля зрения, а ширина двойной голографической решетки 5 равна удвоенной толщине плоской прозрачной пластины 2 с прилегающим к ее входной грани голографическим элементом 1.

Голографический элемент 1 выполнен в виде примыкающих первой 3 и второй 4 голографических решеток.

Первая 3 и вторая 4 голографические решетки выполнены в виде фазового рельефа, сформированного методом динамической голографии, с постоянным периодом, на входной грани плоской прозрачной пластины 1 из стекла К8, причем их углы дифракции имеют противоположные знаки.

Двойная голографическая решетка 5 выполнена в виде суммарного фазового рельефа, сформированного методом динамической голографии путем наложения двух голографических решеток, с постоянным периодом, на выходной грани плоской прозрачной пластины 1, причем их углы дифракции имеют противоположные знаки.

Набор селективных цилиндрических линз Френеля 6 выполнен в виде суммарного фазового рельефа, сформированного методом динамической голографии на поверхности плоскопараллельной стеклянной пластины путем наложения нескольких голографических решеток соответствующих селективным цилиндрическим линзам Френеля.

Метод динамической голографии заключается в непрерывной записи на движущийся носитель интерференционной картины, образованной двумя световыми пучками. Такой принцип формирования голограмм позволяет снять ограничения на длину формируемых дифракционных структур. Носитель представляет собой плоскопараллельную стеклянную пластину с нанесенным на нее слоем фоторезистивного материала. Экспонированная пластина обрабатывается известными методами фотолитографии, позволяющими сформировать на ее поверхности фазовый рельеф.

Блок селективных линейных фотопреобразователей 7 выполнен в виде структуры параллельных линейных элементов типа стекло/Mo/Cu(In.Ga)Se2/CdS/ZnO/Ni/Al на стеклянной подложке с подслоем молибдена (являющимся нижним электродом), поглощающим слоем прямозонного полупроводника CuInSe2 (CIS), полученным методом селенизации металлических слоев Cu-In или Cu-In-Ga, а на поглощающий слой для создания гетероперехода нанесен буферный слой сульфида кадмия CdS, покрытый высокопрозрачной пленкой оксида цинка, причем в качестве верхнего электрода напылен металлический контакт Ni-Al.

Голографический концентратор солнечной энергии работает следующим образом.

Голографический концентратор устанавливается перпендикулярно плоскости, в которой находится траектория движения источника излучения, Солнца. При падении светового излучения на голографический элемент 1 в результате дифракции Брэгга на фазовом рельефе первой 3 и второй 4 голографических решетках оно преобразуется в излучение распространяющееся в плоской прозрачной пластине в направлении двойной голографической решетки 5 под двойным углом 0 к направлению распространения падающего излучения, где угол 0 можно определить из закона Брэгга:

.

Здесь λ - длина волны излучения в воздухе; n - средний показатель преломления фазового рельефа, d - период фазового рельефа. В общем случае, испытав ряд полных внутренних отражений, дифрагировавшее излучение достигает двойной голографической решетки 5, где оно испытывает обратное преобразование, после чего достигает набора селективных цилиндрических линз Френеля 6. Селективные цилиндрические линзы Френеля селективно фокусируют все достигшее их излучение на фотопреобразователи блока селективных линейных фотопреобразователей 7, причем на каждый фотопреобразователь фокусируется излучение только одного достаточно узкого спектрального диапазона, что позволяет существенно повысить эффективность преобразования солнечной энергии в электрическую.

Изменение местоположения источника излучения, Солнца, по своей траектории не вызывает смещения зон фокусировки илучения на блоке селективных линейных фотопреобразователей 7 в перпендикулярном направлении к линейным преобразователям, так как они параллельны плоскости, в которой находится траектория движения источника излучения, Солнца, а приводит к незначительному смещению зон фокусировки. Поэтому длина каждого селективного линейного фотопреобразователя должна быть длиннее продольного размера соответствующей селективной цилиндрической линзы Френеля на величину, определяемую углом ее поля зрения.

ЛИТЕРАТУРА

1. Патент США (US) №005877874.

2. Патент США (US) №006274860 B1.

Похожие патенты RU2403510C1

название год авторы номер документа
ФОТОЭЛЕКТРИЧЕСКИЙ КОНЦЕНТРАТОРНЫЙ МОДУЛЬ 2023
  • Андреев Вячеслав Михайлович
  • Давидюк Николай Юрьевич
RU2818993C1
СПОСОБ ПОЛУЧЕНИЯ ОТРАЖАТЕЛЬНЫХ ГОЛОГРАММ (ВАРИАНТЫ) 1996
  • Урвачев В.И.
RU2125284C1
ЛИНЕЙНЫЙ КОНЦЕНТРАТОР СВЕТОВОГО ИЗЛУЧЕНИЯ 2007
  • Алексеев Алексей Валентинович
  • Белоусов Виктор Сергеевич
  • Звероловлев Владимир Михайлович
  • Мазуров Александр Вячеславович
  • Эйдельман Борис Львович
  • Яремчук Александр Федотович
RU2353865C1
ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ 2018
  • Антышев Игорь Аркадьевич
  • Болотин Евгений Михайлович
  • Иванов Юрий Константинович
  • Новикова Татьяна Николаевна
  • Федоров Алексей Николаевич
RU2684685C1
УСТРОЙСТВО ДОПОЛНЕННОЙ РЕАЛЬНОСТИ НА ОСНОВЕ ГОЛОГРАФИЧЕСКОГО ОПТИЧЕСКОГО ВОЛНОВОДА 2020
  • Чежегов Александр Андреевич
  • Пустынникова Вера Михайловна
  • Попкова Анна Андреевна
  • Егоренков Михаил Викторович
  • Балашов Игорь Сергеевич
  • Шарипова Маргарита Ильгизовна
  • Грунин Андрей Анатольевич
RU2740065C1
СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ НА ОСНОВЕ НАНОГЕТЕРОСТРУКТУРНЫХ ФОТОПРЕОБРАЗОВАТЕЛЕЙ 2010
  • Андреев Вячеслав Михайлович
  • Власов Алексей Сергеевич
  • Ракова Екатерина Павловна
RU2426198C1
УЧЕБНО-ДЕМОНСТРАЦИОННАЯ УСТАНОВКА ДЛЯ ИЗУЧЕНИЯ ОПТИЧЕСКИХ ЯВЛЕНИЙ И ТЕСТ-ОБЪЕКТ ДЛЯ ЕЕ ОСУЩЕСТВЛЕНИЯ 2014
  • Алексеев Сергей Андреевич
  • Стафеев Сергей Константинович
RU2567686C1
СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ С КОНЦЕНТРАТОРОМ 1998
  • Стребков Д.С.
  • Тверьянович Э.В.
  • Артемов А.А.
  • Берсенев М.А.
RU2135909C1
ИМИТАТОР СОЛНЕЧНОГО ИЗЛУЧЕНИЯ 2008
  • Андреев Вячеслав Михайлович
  • Давидюк Николай Юрьевич
  • Ларионов Валерий Романович
  • Румянцев Валерий Дмитриевич
  • Малевский Дмитрий Андреевич
  • Шварц Максим Зиновьевич
RU2380663C1
Способ экспресс-анализа величины динамического диапазона фотоотклика фазового голографического материала 2020
  • Шойдин Сергей Александрович
  • Мешалкин Алексей Юрьевич
RU2734093C1

Реферат патента 2010 года ГОЛОГРАФИЧЕСКИЙ КОНЦЕНТРАТОР СОЛНЕЧНОЙ ЭНЕРГИИ

Изобретение относится к солнечной энергетике и может найти применение, например, для концентрации солнечного излучения на фотогальванические ячейки. Голографический концентратор солнечной энергии, включающий плоскую прозрачную пластину с прилегающим к ее входной грани голографическим элементом, образованным двумя примыкающими голографическими решетками, углы дифракции которых имеют противоположные знаки, блок селективных линейных фотопреобразователей, дополнительно содержит последовательно оптически связанные двойную голографическую решетку, непосредственно прилегающую к выходной грани плоской прозрачной пластины, оптически связанную с голографическими решетками голографического элемента, и набор селективных цилиндрических линз Френеля, оптически связанный с блоком селективных линейных фотопреобразователей. Длина каждого селективного линейного фотопреобразователя больше длины соответствующей селективной цилиндрической линзы Френеля на величину, определяемую углом ее поля зрения. Ширина двойной голографической решетки равна удвоенной толщине плоской прозрачной пластины с прилегающим к ее входной грани голографическим элементом. Технический результат - повышение эффективности концентрации падающего солнечного излучения. 1 ил.

Формула изобретения RU 2 403 510 C1

Голографический концентратор солнечной энергии, включающий плоскую прозрачную пластину с прилегающим к ее входной грани голографическим элементом, образованным двумя примыкающими голографическими решетками, углы дифракции которых имеют противоположные знаки, блок селективных линейных фотопреобразователей, отличающийся тем, что содержит последовательно оптически связанные двойную голографическую решетку, непосредственно прилегающую к выходной грани плоской прозрачной пластины, оптически связанную с голографическими решетками голографического элемента, и набор селективных цилиндрических линз Френеля, оптически связанный с блоком селективных линейных фотопреобразователей, причем длина каждого селективного линейного фотопреобразователя больше длины соответствующей селективной цилиндрической линзы Френеля на величину, определяемую углом ее поля зрения, а ширина двойной голографической решетки равна удвоенной толщине плоской прозрачной пластины с прилегающим к ее входной грани голографическим элементом.

Документы, цитированные в отчете о поиске Патент 2010 года RU2403510C1

US 6274860 В1, 14.08.2001
US 5877874 А, 02.03.1999
Концентратор солнечного излучения 1990
  • Тверьянович Эдуард Владимирович
SU1751624A1
КОЛЛЕКТОР СОЛНЕЧНОГО ИЗЛУЧЕНИЯ 2004
  • Коннор Филип Майкл
RU2347151C2
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1

RU 2 403 510 C1

Авторы

Пилипович Владимир Антонович

Залесский Валерий Борисович

Конойко Алексей Иванович

Поликанин Александр Михайлович

Даты

2010-11-10Публикация

2009-07-06Подача