СОСТАВ ДЛЯ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ Российский патент 2011 года по МПК C09K8/60 

Описание патента на изобретение RU2410406C1

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения нефтеотдачи низкотемпературных пластов путем изоляции или ограничения водопритока к нефтяным скважинам.

Известны составы для повышения нефтеотдачи пластов: состав, содержащий хлорид или нитрат алюминия, карбамид и воду (Пат. РФ №1654554, кл. Е21В 43/22, опубл. 07.06.1991); состав, содержащий соль алюминия, карбамид, неионогенный и, или анионактивный ПАВ и воду (Пат. РФ №2055167, кл. Е21В 43/22, опубл. 27.02.1996); состав, содержащий соль алюминия - хлорид алюминия, карбамид, цеолит натрия и воду (Пат. РФ №2143551, кл. Е21В 43/22, опубл. 27.12.1999). За счет тепловой энергии пласта карбамид постепенно гидролизуется, образуя СО2 и аммиак, рН раствора увеличивается, происходит гидролиз ионов алюминия, в результате через определенное время во всем объеме раствора практически мгновенно образуется гель. В результате образования геля снижается проницаемость пласта для воды. Однако составы можно использовать только для пластов с температурой выше 60-70°С, кроме того, гели, полученные из этих составов, не обладают достаточной прочностью, что снижает эффективность их применения.

Известны составы для повышения нефтеотдачи и изоляции водопритока к скважинам, полученные из растворов, содержащих соли алюминия, карбамид и воду, добавлением в состав водорастворимых полимеров - полиакриламида (Пат. РФ №2076202, кл. Е21В 43/22, опубл. 27.03.1997) и метилцеллюлозы (Пат. РФ №2174592, кл. Е21В 43/22, опубл. 10.10.2001). Гели имеют высокие прочностные характеристики, однако, гелеобразование в этих составах происходит при температурах выше 60-70°С, поэтому невозможно использовать их для низкотемпературных и охлажденных закачкой воды пластов.

Наиболее близким по технической сущности является состав для повышения нефтеотдачи пластов, содержащий карбамид, соль алюминия (алюминий хлористый или азотнокислый), уротропин и воду (Пат. РФ №2066743, кл. Е21В 43/22, опубл. 20.09.1996). Состав получают растворением расчетного количества компонентов в воде. Состав позволяет получить объемный гель гидроксида алюминия при пластовых температурах ниже 60°С. Однако гель обладает недостаточно высокими структурно-механическими свойствами, а также имеет заметно выраженную склонность к синерезису.

Задачей предлагаемого изобретения является повышение эффективности состава для увеличения нефтеотдачи пластов с низкой пластовой температурой путем изоляции или ограничения водопритока к нефтяным скважинам за счет повышения структурно-механических свойств, снижения синерезиса и улучшения фильтрационных характеристик геля, образующего водоизолирующий экран.

Технический результат достигается тем, что в состав, включающий соль алюминия, карбамид, уротропин и воду, дополнительно вводят водорастворимый полимер - поливиниловый спирт и борную кислоту. Способ получения состава для повышения нефтеотдачи пластов включает перемешивание водного раствора поливинилового спирта и водного раствора остальных компонентов состава. Водные растворы готовят с концентрациями в два раза, превышающими необходимые, затем смешением в равных количествах получают необходимый состав при следующем соотношении компонентов, мас.%: соль алюминия (в пересчете на безводную) - 2.0-8.0; карбамид - 4.0-16.0; уротропин - 2.0-8.0; поливиниловый спирт (ПВС) - 3.0-5.0; борная кислота - 0.5-1.0 и вода - остальное. Полученный состав при закачке в пласт с температурой ниже 60°С через определенное время в пласте образует объемный гель с высокими структурно-механическими свойствами. Гель блокирует наиболее обводненные высокопроницаемые пропластки, в результате непромытые нефтенасыщенные зоны подключаются к разработке.

В качестве показателей структурно-механических свойств гелей используют значения вязкости, модуля упругости и пластической прочности.

Измерение вязкости растворов проводят с использованием вибрационного вискозиметра с камертонным датчиком «Реокинетика». В качестве калибровочной жидкости используют дистиллированную воду.

Определение модуля упругости гелей проводят на основании диаграмм «напряжение - деформация», полученных в квазистатическом режиме сжатия цилиндрических образцов. Используют оригинальную аппаратуру на базе микрометра и электронных весов. Модуль упругости рассчитывают как угол наклона начального линейного участка зависимости напряжения сжатия от величины деформации, для которого соблюдается закон Гука.

Пластическую прочность измеряют на коническом пластометре П.А.Ребиндера.

Для определения фильтрационных характеристик через водонасыщенную модель, состоящую из насыпных колонок, заполненных дезинтегрированным керновым материалом, прокачивают 0.3 поровых объема гелеобразующего состава по прототипу. Колонку закрывают и оставляют на время, достаточное для гелеобразования (1-3 суток). После этого через колонку при нескольких фиксированных перепадах давления фильтруют 1 поровый объем водопроводной воды. В ходе фильтрации измеряют расход воды. Аналогично осуществляют эксперимент по закачке предлагаемого состава.

На основании данных фильтрационных опытов по формуле Дарси рассчитывают

проницаемость колонок по воде до и после образования геля. Формула для вычисления водопроницаемости k (µм2) по уравнению Дарси:

где Q - расход воды через колонку;

µ - динамическая вязкость воды;

L - длина колонки;

S - площадь поперечного сечения колонки;

ΔР - перепад давления на колонке.

В лабораторных условиях провели исследование применимости предлагаемого состава для увеличения нефтеотдачи и ограничения водопритока в скважинах пермо-карбоновой залежи Усинского месторождения, расположенных в зонах залежи с пластовой температурой не более 23°С. Исследовали фильтрационные характеристики и нефтевытесняющую способность состава в неоднородной модели пласта. Исследования проводили на установке для изучения фильтрации при постоянном расходе через модель пласта, состоящую из двух параллельных колонок.

Эффективность применения предлагаемого состава изучали в процессе доотмыва остаточной нефти из двух параллельных колонок с различной проницаемостью. По полученным данным рассчитывали градиент давления grad P, атм/м, скорость фильтрации V, м/сут, подвижность жидкостей k/µ, мкм2/(мПа·с), и коэффициент вытеснения нефти водой Кв, %. Использовали насыпные модели пласта, приготовленные из дезинтегрированного кернового материала, пресную воду и дегазированную нефть Усинского месторождения (термостабилизированная нефть с добавлением 30% керосина). Проницаемость параллельных моделей составляла 0.314 и 1.141 мкм2 и различалась в 3.6 раза. Время термостатирования подбиралось с учетом кинетики гелеобразования при температуре опыта и составляло 1 сут. Результаты исследований приведены в таблице 3.

После закачки состава, содержащего 5.0 мас.% ПВС, 1.0 мас.% борной кислоты, 5 мас.% алюминия азотнокислого, 15.0 мас.% карбамида, 6.0 мас.% уротропина и 68.0 мас.% воды в модели пласта в условиях, моделирующих доотмыв остаточной нефти в скважинах пермо-карбоновой залежи Усинского месторождения, при 25°С образуется блокирующий экран, выдерживающий перепад давлений больше 35 атм/м. Фильтрация жидкости после образования геля в модели пласта происходила при градиенте давления больше 40 атм/м. При этом наблюдалось выравнивание профиля притока и увеличение коэффициента нефтевытеснения на 5.6-11.3%.

Результаты исследований структурно-механических и фильтрационных характеристик прототипа и предлагаемого состава приведены в таблицах 1 и 2.

Приводим примеры конкретных составов.

Пример 1. (по прототипу) 72.0 г алюминия хлористого 6-водного, 160.0 г карбамида и 80.0 г уротропина растворяют в 688.0 г пресной воды. Получают 1000.0 г раствора, содержащего 4.0 мас.% алюминия хлористого, 16.0 мас.% карбамида, 8.0 мас.% уротропина и 72.0 мас.% воды. Полученный состав выдерживают при 22°С до образования геля. Время гелеобразования состава - 5 часов. Затем проводят измерения вязкости и упругости полученного геля. Значения вязкости и модуля упругости геля приведены в таблице 2.

Пример 2. (по прототипу) К 800.0 г пресной воды добавляют 60.0 г полиоксихлорида алюминия аква-аурат 30, 80.0 г карбамида и 60.0 г уротропина. После тщательного перемешивания получают 1000.0 г состава, содержащего 6.0 мас.% полиоксихлорида алюминия аква-аурат 30 (в пересчете на безводный концентрация алюминия хлористого составляет 4.7 мас.%), 8.0 мас.% карбамида, 6.0 мас.% уротропина и 80.0 мас.% воды. Полученный состав выдерживают при 22°С до образования геля. Время гелеобразования состава 5 часов. Затем проводят измерения вязкости, модуля упругости и пластической прочности полученного геля. Значения вязкости и модуля упругости геля приведены в таблице 2. Пластическая прочность геля составляет 0.8 кПа. Состав используют для определения фильтрационных свойств. Водопроницаемость колонки после образования геля снижается в 32 раза. Синерезис геля за 7 суток составляет 21.4%.

Пример 3. 60.0 г полиоксихлорида алюминия аква-аурат 30, 80.0 г карбамида, 60.0 г уротропина и 5.0 г борной кислоты растворяют в 295.0 г пресной воды. К полученному в количестве 500.0 г раствору, содержащему 12.0 мас.% полиоксихлорида алюминия аква-аурат 30, 16.0 мас.% карбамида, 12.0 мас.% уротропина, 1.0 мас.% борной кислоты и 59.0 мас.% воды, при перемешивании добавляют 500.0 г 6.0%-ного раствора ПВС. После тщательного перемешивания получают 1000.0 г состава, содержащего 3.0 мас.% ПВС, 0.5 мас.% борной кислоты, 6.0 мас.% полиоксихлорида алюминия аква-аурат 30 (в пересчете на безводный концентрация алюминия хлористого составляет 4.7 мас.%), 8.0 мас.% карбамида, 6.0 мас.% уротропина и 76.5 мас.% воды. Состав термостатируют при 22°С до образования геля. Время гелеобразования состава - 5 часов. Затем проводят измерения вязкости и упругости полученного геля. Значения вязкости и модуля упругости геля приведены в таблице 2.

Пример 4. К 60.0 г полиоксихлорида алюминия аква-аурат 30, 80.0 г карбамида, 60.0 г уротропина и 10.0 г борной кислоты добавляют 290.0 г пресной воды, тщательно перемешивают до гомогенного состояния. К полученному в количестве 500.0 г раствору, содержащему 12.0 мас.% полиоксихлорида алюминия аква-аурат 30, 16.0 мас.% карбамида, 12.0 мас.% уротропина, 2.0 мас.% борной кислоты и 58.0 мас.% воды, при перемешивании добавляют 500.0 г 10.0%-ного раствора ПВС. После перемешивания получают 1000.0 г состава, содержащего 5.0 мас.% ПВС, 1.0 мас.% борной кислоты, 6.0 мас.% полиоксихлорида алюминия аква-аурат 30 (в пересчете на безводный концентрация алюминия хлористого составляет 4.7 мас.%), 8.0 мас.% карбамида, 6.0 мас.% уротропина и 74.0 мас.% воды. Состав термостатируют при 22°С до образования геля. Время гелеобразования состава - 4.5 часа. Затем проводят измерения вязкости и упругости полученного геля. Значения вязкости и модуля упругости геля приведены в таблице 2. Пластическая прочность геля составляет 12.56 кПа. Состав используют для определения фильтрационных свойств. Водопроницаемость колонки после образования геля снижается в 400 раз. Синерезис геля за 7 суток составляет 0,7%.

Пример 5. 60.0 г полиоксихлорида алюминия аква-аурат 30, 160.0 г карбамида, 60.0 г уротропина и 10.0 г борной кислоты растворяют в 210.0 г пресной воды. К полученному в количестве 500.0 г раствору, содержащему 12.0 мас.% полиоксихлорида алюминия аква-аурат 30, 32.0 мас.% карбамида, 12.0 мас.% уротропина, 2.0 мас.% борной кислоты и 42.0 мас.% воды, при перемешивании добавляют 500.0 г 10.0%-ного раствора ПВС и получают 1000.0 г состава, содержащего 5.0 мас% ПВС, 1.0 мас.% борной кислоты, 6.0 мас.% полиоксихлорида алюминия аква-аурат 30 (в пересчете на безводный концентрация алюминия хлористого составляет 4.7 мас.%), 16.0 мас.% карбамида, 6.0 мас.% уротропина и 66.0 мас.% воды. Состав термостатируют при 22°С до образования геля. Время гелеобразования состава - 4 часа. Затем проводят измерения вязкости и упругости полученного геля. Значения вязкости и модуля упругости геля приведены в таблице 2.

Пример 6. К 102.0 г полиоксихлорида алюминия аква-аурат 30, 160.0 г карбамида, 80.0 г уротропина и 10.0 г борной кислоты добавляют 148.0 г пресной воды и перемешивают. К полученному в количестве 500.0 г раствору, содержащему 20.4 мас.% полиоксихлорида алюминия аква-аурат 30, 32.0 мас.% карбамида, 16.0 мас.% уротропина, 2.0 мас.% борной кислоты и 29.6 мас.% воды, при перемешивании добавляют 500.0 г 6.0%-ного раствора ПВС. После перемешивания получают 1000.0 г состава, содержащего 3.0 мас.% ПВС, 1.0 мас.% борной кислоты, 10.2 мас.% полиоксихлорид алюминия аква-аурат 30 (в пересчете на безводный концентрация алюминия хлористого составляет 8.0 мас.%), 16.0 мас.% карбамида, 8.0 мас.% уротропина и 61.8 мас.% воды. Состав термостатируют при 22°С до образования геля. Время гелеобразования состава - 4.5 часа. Затем проводят измерения вязкости и упругости полученного геля. Значения вязкости и модуля упругости геля приведены в таблице 2.

Пример 7. 72.0 г алюминия хлористого 6-водного, 160.0 г карбамида, 40.0 г уротропина и 10.0 г борной кислоты растворяют в 218.0 г пресной воды. К полученному в количестве 500.0 г раствору, содержащему 8.0 мас.% алюминия хлористого, 32.0 мас.% карбамида, 8.0 мас.% уротропина, 2.0 мас.% борной кислоты и 50.0 мас.% воды, при перемешивании добавляют 500.0 г 10.0%-ного раствора ПВС и получают 1000.0 г состава, содержащего 5.0 мас.% ПВС, 1.0 мас.% борной кислоты, 4.0 мас.% алюминия хлористого, 16.0 мас.% карбамида, 4.0 мас.% уротропина и 70.0 мас.% воды. Состав термостатируют при 22°С до образования геля. Время гелеобразования состава - 8 часов. Затем проводят измерения вязкости и упругости полученного геля. Значения вязкости и модуля упругости геля приведены в таблице 2.

Пример 8. К 72.0 г алюминия хлористого 6-водного, 160.0 г карбамида, 20.0 г уротропина и 10.0 г борной кислоты добавляют 238.0 г пресной воды, тщательно перемешивают до гомогенного состояния. К полученному в количестве 500.0 г раствору, содержащему 8.0 мас.% алюминия хлористого, 32.0 мас.% карбамида, 4.0 мас.% уротропина, 2.0 мас.% борной кислоты и 54.0 мас.% воды, при перемешивании добавляют 500.0 г 6.0%-ного раствора ПВС. После перемешивания получают 1000.0 г состава, содержащего 3.0 мас.% ПВС, 1.0 мас.% борной кислоты, 4.0 мас.% алюминия хлористого, 16.0 мас.% карбамида, 2.0 мас.% уротропина и 74.0 мас.% воды. Состав термостатируют при 22°С до образования геля. Время гелеобразования состава - 36 часов. Затем проводят измерения вязкости и упругости полученного геля. Значения вязкости и модуля упругости геля приведены в таблице 2.

Пример 9. 36.0 г алюминия хлористого 6-водного, 40.0 г карбамида, 60.0 г уротропина и 10.0 г борной кислоты растворяют в 354.0 г пресной воды. К полученному в количестве 500.0 г раствору, содержащему 4.0 мас.% алюминия хлористого, 8.0 мас.% карбамида, 12.0 мас.% уротропина, 2.0 мас.% борной кислоты и 74.0 мас.% воды, при перемешивании добавляют 500.0 г 6.0%-ного раствора ПВС и получают 1000.0 г состава, содержащего 3.0 мас.% ПВС, 1.0 мас.% борной кислоты, 2.0 мас.% алюминия хлористого, 4.0 мас.% карбамида, 6.0 мас.% уротропина и 84.0 мас.% воды. Состав термостатируют при 22°С до образования геля. Время гелеобразования состава - 9.5 часов. Затем проводят измерения вязкости и упругости полученного геля. Значения вязкости и модуля упругости геля приведены в таблице 2.

Пример 10. К 72.0 г алюминия хлористого 6-водного, 60.0 г карбамида, 60.0 г уротропина и 10.0 г борной кислоты добавляют 298.0 г пресной воды, тщательно перемешивают до гомогенного состояния. К полученному в количестве 500.0 г раствору, содержащему 8.0 мас.% алюминия хлористого, 12.0 мас.% карбамида, 12.0 мас.% уротропина, 2.0 мас.% борной кислоты и 66.0 мас.% воды, при перемешивании добавляют 500.0 г 10.0%-ного раствора ПВС. После перемешивания получают 1000.0 г состава, содержащего 5.0 мас.% ПВС, 1.0 мас.% борной кислоты, 4.0 мас.% алюминия хлористого, 6.0 мас.% карбамида, 6.0 мас.% уротропина и 78.0 мас.% воды. Состав термостатируют при 22°С до образования геля. Время гелеобразования состава - 5 часов. Затем проводят измерения вязкости и упругости полученного геля. Значения вязкости и модуля упругости геля приведены в таблице 2.

Пример 11. 108.0 г алюминия хлористого 6-водного, 80.0 г карбамида, 60.0 г уротропина и 10.0 г борной кислоты растворяют в 242.0 г пресной воды. К полученному в количестве 500.0 г раствору, содержащему 12.0 мас.% алюминия хлористого, 16.0 мас.% карбамида, 12.0 мас.% уротропина, 2.0 мас.% борной кислоты и 58.0 мас.% воды, при перемешивании добавляют 500.0 г 10.0%-ного раствора ПВС и получают 1000.0 г состава, содержащего 5.0 мас.% ПВС, 1.0 мас.% борной кислоты, 6.0 мас.% алюминия хлористого, 8.0 мас.% карбамида, 6.0 мас.% уротропина и 74.0 мас.% воды. Состав термостатируют при 22°С до образования геля. Время гелеобразования состава - 8 часов. Затем проводят измерения вязкости и упругости полученного геля. Значения вязкости и модуля упругости геля приведены в таблице 2.

Пример 12. К 88.0 г алюминия азотнокислого 9-водного, 150.0 г карбамида, 60.0 г уротропина и 10.0 г борной кислоты добавляют 192.0 г пресной воды, тщательно перемешивают до гомогенного состояния. К полученному в количестве 500.0 г раствору, содержащему 10.0 мас.% алюминия азотнокислого, 30.0 мас.% карбамида, 12.0 мас.% уротропина, 2.0 мас.% борной кислоты и 46.0 мас.% воды, при перемешивании добавляют 500.0 г 10.0%-ного раствора ПВС. После перемешивания получают 1000.0 г состава, содержащего 5.0 мас.% ПВС, 1.0 мас.% борной кислоты, 5.0 мас.% алюминия азотнокислого, 15.0 мас.% карбамида, 6.0 мас.% уротропина и 68.0 мас.% воды. Состав термостатируют при 22°С до образования геля. Время гелеобразования состава - 14 часов. Затем проводят измерения вязкости и упругости полученного геля. Состав используют для определения фильтрационных характеристик и нефтевытесняющей способности состава. После образования геля наблюдается выравнивание профиля притока и увеличение коэффициента нефтевытеснения на 5.6-11.3%. Значения вязкости и модуля упругости геля приведены в таблице 2.

Из результатов исследований, представленных в таблице 2, следует, что гели, полученные из предлагаемого состава при температуре 22°С, имеют улучшенные структурно-механические свойства. Вязкость и модуль упругости геля, полученного из предлагаемого состава, в 1.5-9.7 раз и в 1.9-8.5 раз, соответственно, выше, чем вязкость и модуль упругости геля, полученного из состава-прототипа. Значение пластической прочности геля предлагаемого состава увеличивается в 15.7 раз, по сравнению с пластической прочностью геля состава-прототипа. Исследование процесса старения гелей со временем показало, что синерезис геля предлагаемого состава в 30.6 раз ниже, чем геля-прототипа.

В результате проведенных исследований фильтрационных характеристик и проведенных расчетов было определено, что водопроницаемость колонок с составом - прототипом до и после гелеобразования снижается в 32 раза, предлагаемый гелеобразующий состав снижает проницаемость колонки после гелеобразования в 400 раз. Таким образом, использование предлагаемого состава приводит к увеличению эффективности состава в 12.5 раз, по сравнению с прототипом (табл.1), кроме того, прирост коэффициента нефтевытеснения составляет 5.6-11.3% (табл.3).

Использование предлагаемого состава позволяет добиться эффективного ограничения водопритока, увеличения охвата пласта заводнением и повышения нефтеотдачи пластов с пластовой температурой ниже 60°С за счет повышения структурно-механических свойств, снижения синерезиса геля и улучшения фильтрационных характеристик геля, образующего водоизолирующий экран.

Таблица 1 Фильтрационные параметры Состав: вещества, мас.% По прототипу ПВС - 5.0 Полиоксихлорид алюминия Борная кислота -1.0 аква-аурат 30-6.0 Полиоксихлорид алюминия Карбамид - 8.0 аква-аурат 30-6.0 Уротропин - 6.0 Карбамид - 8.0 Вода - остальное Уротропин - 6.0 Вода - остальное Газопроницаемость колонок с воздушно-сухим грунтом, µм2 41 54 Водопроницаемость колонок без геля k, µм2 13 20 Длина, см 87 116 Внутренний диаметр, см 1.8 2 Давление начала фильтрации Р, атм 0.20 1.45 Водопроницаемость колонки с гелем kг, µм2 0.41 0.05 Кратность снижения проницаемости, k/kг 32 400 kг/P, µм2/атм 2.09 0.03 P/kг, атм/µм2 0.48 29.51

Таблица 2 № п.п Вещества Концентрация, масс.% Вязкость раствора, мПа·с Вязкость геля, Па·с Модуль упругости геля, кПа 1 2 3 4 5 6 1 По прототипу АlСl3·6Н2O 7.2 (в пересчете на безводный АlСl3) (4.0) 1.51 0.88 32.4 Карбамид 16.0 Уротропин 8.0 Вода 72.0 2 По прототипу Полиоксихлорид алюминия аква-аурат 30 6.0 (в пересчете на безводный АlСl3) (4.7) 1.59 1.03 64.1 Карбамид 8.0 Уротропин 6.0 Вода 80.0 3 ЛВС 3.0 Борная кислота 0.5 Полиоксихлорид алюминия аква-аурат 30 6.0 28.27 5.46 248.0 (в пересчете на безводный АlСl3) (4.7) Карбамид 8.0 Уротропин 6.0 Вода 76.5 4 ЛВС 5.0 Борная кислота 1.0 Полиоксихлорид алюминия аква-аурат 30 6.0 109.40 7.85 250.7 (в пересчете на безводный АlСl3) (4.7) Карбамид 8.0 Уротропин 6.0 Вода 74.0 5 ПВС 5.0 Борная кислота 1.0 Полиоксихлорид алюминия аква-аурат 30 6.0 142.02 8.54 237.3 (в пересчете на безводный АlСl3) (4.7) Карбамид 16.0 Уротропин 6.0 Вода 66.0 6 ПВС 3.0 Борная кислота 1.0 Полиоксихлорид алюминия аква-аурат 30 10.2 43.03 3.25 275.5 (в пересчете на безводный АlСl3) (8.0) Карбамид 16.6 Уротропин 8.0 Вода 61.8 7 ПВС 5.0 Борная кислота 1.0 АlСl3·6Н2O 7.2 (в пересчете на безводный АlСl3) (4.0) 77.14 4.98 158.8 Карбамид 16.0 Уротропин 4.0 Вода 70.0 8 ПВС 3.0 Борная кислота 1.0 АlСl3·6Н2O 7.2 (в пересчете на безводный АlСl3) (4.0) 29.98 7.28 285.2 Карбамид 16.0 Уротропин 2.0 Вода 74.0 9 ПВС 3.0 Борная кислота 1.0 АlСl3·6Н2O 3.6 (в пересчете на безводный АlСl3) (2.0) 23.52 1.49 62.7 Карбамид 4.0 Уротропин 6.0 Вода 84.0 1U ПВС 5.0 Борная кислота 1.0 АlСl3·6Н2O 7.2 (в пересчете на безводный АlСl3) (4.0) 67.38 2.21 105.8 Карбамид 6.0 Уротропин 6.0 Вода 78.0 11 ПВС 5.0 Борная кислота 1.0 АlСl3·6Н2O 10.8 (в пересчете на безводный АlСl3) (6.0) 64.90 2.38 113.8 Карбамид 8.0 Уротропин 6.0 Вода 74.0 12 ПВС 5.0 Борная кислота 1.0 Аl(NО3)3·9Н2O 8.8 (в пересчете на безводный Аl(NО3)3) (5.0) 100.17 2.43 42.4 Карбамид 15.0 Уротропин 6.0 Вода 68.0

Таблица 3 Наименование параметра Величина параметра 1 колонка 2 колонка Модель (ср.) Газопроницаемость, мкм2 0.314 1.141 0.728 Поровый объем, см3 26.3 31.6 57.9 Объем закачки воды до гелеобразующего состава, в см3 93.8 190.0 283.8 в объемах пор 3.6 6.0 4.9 Среднее отношение подвижностей 1 2 Коэффициент вытеснения нефти водой, % 72.8 28.0 41.2 Объем оторочки гелеобразующего состава, в см3 10.0 16.8 26.8 в объемах пор 0.38 0.53 0.46 Объем закачки воды после гелеобразующего состава, в см3 14.1 264.5 278.6 в объемах пор 0.54 8.37 4.81 Среднее отношение подвижностей 1 19 Жидкости после закачки состава Коэффициент вытеснения нефти водой и 78.4 39.3 50.8 составом, % Прирост коэффициента нефтевытеснения, % 5.6 11.3 9.6 Остаточная нефтенасыщенность, % 8.2 46.1 28.9

Похожие патенты RU2410406C1

название год авторы номер документа
СОСТАВ ДЛЯ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2015
  • Алтунина Любовь Константиновна
  • Кувшинов Владимир Александрович
  • Стасьева Любовь Анатольевна
RU2577556C1
Состав для увеличения нефтеотдачи пластов 2020
  • Алтунина Любовь Константиновна
  • Кувшинов Владимир Александрович
  • Стасьева Любовь Анатольевна
RU2746609C1
Способ формирования противофильтрационного барьера для хранилищ радиоактивных отходов 2021
  • Алтунина Любовь Константиновна
  • Кувшинов Владимир Александрович
  • Стасьева Любовь Анатольевна
RU2757782C1
СПОСОБ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ 2021
  • Алтунина Любовь Константиновна
  • Кувшинов Владимир Александрович
  • Стасьева Любовь Анатольевна
RU2772651C1
Способ разработки нефтяной залежи 2016
  • Алтунина Любовь Константиновна
  • Кувшинов Владимир Александрович
  • Стасьева Любовь Анатольевна
RU2610958C1
Состав для увеличения нефтеотдачи пластов 2019
  • Алтунина Любовь Константиновна
  • Кувшинов Владимир Александрович
  • Стасьева Любовь Анатольевна
RU2733350C1
Состав для повышения нефтеотдачи пластов (варианты) 2021
  • Алтунина Любовь Константиновна
  • Кувшинов Владимир Александрович
  • Стасьева Любовь Анатольевна
  • Кувшинов Иван Владимирович
  • Шолидодов Мехроб Рустамбекович
  • Козлов Владимир Валерьевич
RU2781207C1
СОСТАВ ДЛЯ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ (ВАРИАНТЫ) 2014
  • Алтунина Любовь Константиновна
  • Кувшинов Владимир Александрович
  • Стасьева Любовь Анатольевна
RU2572439C1
СОСТАВ ДЛЯ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ (ВАРИАНТЫ) 2014
  • Алтунина Любовь Константиновна
  • Кувшинов Владимир Александрович
  • Стасьева Любовь Анатольевна
RU2546700C1
Состав для увеличения нефтеотдачи пластов 2016
  • Алтунина Любовь Константиновна
  • Кувшинов Владимир Александрович
  • Стасьева Любовь Анатольевна
  • Козлов Владимир Валерьевич
RU2627802C1

Реферат патента 2011 года СОСТАВ ДЛЯ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ

Изобретение относится к нефтедобывающей промышленности, в частности к составам для повышения нефтеотдачи низкотемпературных пластов путем изоляции или ограничения водопритока к нефтяным скважинам. В способе приготовления состава для повышения нефтеотдачи пластов, включающего соль алюминия, карбамид, уротропин и воду, путем перемешивания его компонентов, состав дополнительно содержит поливиниловый спирт - ПВС и борную кислоту, перемешивание осуществляют с предварительным приготовлением двух растворов - раствор ПВС в воде и раствор остальных компонентов в воде с концентрациями, в два раза превышающими необходимые, и перемешиванием полученных растворов в соотношении 1:1 по массе при следующем соотношении компонентов, мас.%: соль алюминия (в пересчете на безводную) 2,0-8,0, карбамид 4,0-16,0, уротропин 2,0-8,0, ПВС 3,0-5,0, борная кислота 0,5-1,0, вода - остальное. Состав для повышения нефтеотдачи пластов характеризуется тем, что он получен указанным выше способом. Технический результат - повышение эффективности состава для увеличения нефтеотдачи пластов с низкой пластовой температурой за счет повышения структурно-механических свойств, снижения синерезиса геля и улучшения фильтрационных характеристик геля, образующего водоизолирующий экран. 2 н.п. ф-лы, 3 табл.

Формула изобретения RU 2 410 406 C1

1. Способ приготовления состава для повышения нефтеотдачи пластов, включающего соль алюминия, карбамид, уротропин и воду, путем перемешивания его компонентов, отличающийся тем, что состав дополнительно содержит поливиниловый спирт - ПВС и борную кислоту, а перемешивание осуществляют с предварительным приготовлением двух растворов - раствор ПВС в воде и раствора остальных компонентов в воде с концентрациями, в два раза превышающими необходимые, и перемешиванием полученных растворов в соотношении 1:1 по массе при следующем соотношении компонентов, мас.%:
Соль алюминия (в пересчете на безводную) 2,0-8,0 Карбамид 4,0-16,0 Уротропин 2,0-8,0 ПВС 3,0-5,0 Борная кислота 0,5-1,0 Вода остальное

2. Состав для повышения нефтеотдачи пластов, характеризующийся тем, что он получен способом по п.1.

Документы, цитированные в отчете о поиске Патент 2011 года RU2410406C1

СОСТАВ ДЛЯ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ 1993
  • Алтунина Л.К.
  • Кувшинов В.А.
  • Стасьева Л.А.
RU2066743C1
СОСТАВ ДЛЯ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ 1999
RU2174592C2
СПОСОБ СЕЛЕКТИВНОЙ ИЗОЛЯЦИИ ВОДОПРИТОКА К ДОБЫВАЮЩИМ НЕФТЯНЫМ СКВАЖИНАМ 2007
  • Радченко Станислав Сергеевич
  • Новаков Иван Александрович
  • Радченко Филипп Станиславович
  • Озерин Александр Сергеевич
  • Зельцер Павел Семенович
  • Якубовский Сергей Юрьевич
RU2348792C1
RU 2002116441 A1, 20.12.2003
СПОСОБ РЕГУЛИРОВАНИЯ РАЗРАБОТКИ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ С РАЗНОПРОНИЦАЕМЫМИ ПЛАСТАМИ 1992
  • Алтунина Л.К.
  • Кувшинов В.А.
  • Стасьева Л.А.
  • Манжай В.Н.
  • Назаров В.И.
  • Бернштейн А.М.
  • Полковников В.В.
  • Тарасов А.Г.
RU2061856C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ 1996
  • Алтунина Л.К.
  • Кувшинов В.А.
  • Стасьева Л.А.
RU2120544C1
СОСТАВ ДЛЯ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ 1997
  • Селимов Ф.А.
  • Овсюков А.В.
  • Телин А.Г.
  • Фахретдинов Р.Н.
  • Максимова Т.Н.
  • Хайрединов Н.Ш.
  • Кононова Т.Г.
  • Исмагилов Т.А.
RU2143550C1
Состав для повышения нефтеотдачи 1989
  • Кувшинов Владимир Александрович
  • Алтунина Любовь Константиновна
  • Элер Александр Александрович
  • Ефремов Игорь Федорович
  • Новгородов Валерий Васильевич
  • Ахметшин Мавнетзин Абидович
  • Трофимов Александр Сергеевич
SU1654554A1
СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНОГО НЕФТЯНОГО ПЛАСТА 1998
  • Алмаев Р.Х.
  • Базекина Л.В.
  • Ежов М.Б.
  • Насибуллин А.А.
  • Олюнин В.А.
  • Пустовалов М.Ф.
  • Фейзханов Ф.А.
RU2167278C2
US 4124072 A, 07.11.1978.

RU 2 410 406 C1

Авторы

Алтунина Любовь Константиновна

Кувшинов Владимир Александрович

Стасьева Любовь Анатольевна

Даты

2011-01-27Публикация

2009-12-09Подача