Изобретение относится к лазерно-интерферометрическим гравитационно-волновым (ГВ) детекторам и может быть использовано в гравитационно-волновой астрономии, например, для обнаружения периодических низкочастотных ГВ сигналов от двойных релятивистских астрофизических объектов.
Известно, что существует теоретическое предсказание о формировании эластодинамического отклика веберовского детектора [1] и электродинамического отклика длиннобазовых [1] и компактных [2] лазерно-интерферометрических антенн на воздействие поля гравитационного излучения (ГИ). ГВ-антенны веберовского типа и длиннобазовые лазерно-интерферометрические антенны предназначены для обнаружения коротких импульсных ГВ-сигналов от вспышечных источников, пространственно-временные характеристики которых неизвестны, что уменьшает достоверность их обнаружения. Требуемое мгновенное отношение сигнал/шум для уверенного обнаружения ГВ-сигнала от вспышечного источника ГИ должно быть больше 13. Кроме того, существуют ГВ-детекторы [3, 4], принцип действия которых заключается в том, что в результате ГВ-воздействия детектируемого периодического низкочастотного ГВ-сигнала на оптическое излучение первого и второго оптических резонаторов (как бегущих, так и стоячих волн) через изменение их показателей преломления вдоль оптических путей распространения излучения происходит набег фаз в оптических излучениях по закону изменения ГВ-сигнала. В силу геометрической неэквивалентности первого и второго резонаторов это воздействие приводит к различным изменениям показателей преломления вдоль оптических путей распространения излучений, а следовательно, и к различным набегам фаз в этих оптических излучениях. По наличию, величине и закону изменения разности набегов фаз в оптических излучениях резонаторов и судят о воздействии ГВ-сигнала на оптические излучения резонаторов, а следовательно, о наличии (обнаружении) детектируемого ГВ-сигнала. Таким образом, указанные устройства [3, 4] имеют принципиальную возможность по обнаружению периодических низкочастотных ГВ-сигналов от двойных релятивистских астрофизических объектов.
Известен [5] ГВ-детектор для обнаружения периодических ГВ-сигналов, который является наиболее близким к заявляемому объекту и поэтому выбран в качестве ПРОТОТИПА. Он представляет собой лазер с двумя геометрически неэквивалентными первым и вторым оптическими резонаторами стоячих волн. Первый резонатор образован первым глухим зеркалом, активным элементом, полупрозрачным разделительным зеркалом, первым поляризатором и вторым глухим зеркалом, причем часть оптического пути резонатора от первого глухого зеркала до полупрозрачного разделительного зеркала перпендикулярен оптическому пути от полупрозрачного разделительного зеркала до второго глухого зеркала. Второй резонатор образован первым глухим зеркалом, активным элементом, полупрозрачным зеркалом, вторым поляризатором и третьим глухим зеркалом. Оптические излучения, генерируемые в первом и втором резонаторах, имеют взаимно ортогональные линейные поляризации. В силу пространственно-геометрической неэквивалентности первого и второго резонаторов прототипа принцип действия последнего аналогичен рассмотренному выше ГВ-детектору [3, 4]. Выходящее через полупрозрачное разделительное зеркало излучение первого и второго резонаторов гетеродинируется с помощью линейного поляризатора, имеющего плоскость пропускания, наклоненную под углом 45° к электрическим векторам генерируемых излучений. Сигнал биений регистрируется с помощью фотоприемника (фотодетектора) и поступает в блок обработки сигналов, предназначенный для выделения полезного сигнала из шума. Поскольку выходные с полупрозрачного разделительного зеркала оптические излучения перпендикулярны (т.е. угол между ними более 45°), то электродинамический отклик ГВ-детектора на воздействие поля гравитационного излучения, приводящего к противоположному по знакам набегу фаз в оптических излучениях первого и второго резонаторов через изменение показателя преломления вдоль оптических путей взаимно ортогональных участков резонаторов будут иметь противоположные знаки. Поэтому сигнал на выходе фотоприемника будет пропорционален сумме набегов фаз в оптических излучениях первого и второго резонаторов.
Однако прототип не имеет возможности использования информации об угловом (пространственном) положении детектируемого источника ГВ-сигнала относительно ГВ-детектора и информации о том, что детектируемый ГВ-сигнал имеет вертикальную и горизонтальную поляризацию. Кроме того, даже имея информацию об угловом положении источника ГВ-сигнала, прототип не имеет возможности запеленговать этот источник.
Задача, на решение которой направлено заявляемое изобретение, заключается в разработке ГВ-детектора, позволяющего использовать ГВ-детектор как ГВ-пеленгатор для определения относительно ГВ-детектора углового направления на источник ГИ от двойных релятивистских астрофизических объектов.
Сущность изобретения заключается в том, что в известный гравитационно-волновой детектор, содержащий активный элемент и рабочую среду в нем, первое, второе и третье глухие зеркала, полупрозрачное разделительное зеркало, первый и второй поляризаторы, линейный поляризатор, фотоприемник с блоком обработки сигналов на его выходе, причем размещенные на пути оптического излучения первое глухое зеркало, активный элемент, полупрозрачное разделительное зеркало, первый поляризатор и второе глухое зеркало являются элементами первого оптического резонатора стоячих волн, первое глухое зеркало, активный элемент, полупрозрачное разделительное зеркало, второй поляризатор с ортогональной поляризацией к первому поляризатору и третье глухое зеркало образуют второй оптический резонатор стоячих волн, а оптические излучения обоих резонаторов на взаимно ортогональных линейных поляризациях с выхода полупрозрачного разделительного зеркала через линейный поляризатор поступают на вход фотоприемника, для решения поставленной задачи в состав первого резонатора между первым глухим зеркалом и первым поляризатором введены параллельно размещенные первое и второе дополнительные глухие зеркала, причем сумма геометрических длин от первого глухого зеркала до первого дополнительного глухого зеркала и от второго дополнительного глухого зеркала до полупрозрачного разделительного зеркала первого оптического резонатора равна геометрической длине от полупрозрачного разделительного зеркала до третьего глухого зеркала второго оптического резонатора, а угол между падающим от активного элемента оптическим лучом на полупрозрачное разделительное зеркало и отраженным от него оптическим лучом составляет меньше 45°, выходом заявляемого объекта является выход блока обработки сигналов.
Введение новых элементов: первого и второго дополнительных глухих зеркал, их взаимное размещение в первом резонаторе лазера и взаимное расположение элементов первого и второго оптических резонаторов позволяют достичь решения поставленной задачи - обеспечить пеленгацию источников низкочастотных гравитационных излучений от двойных релятивистских астрофизических объектов с высокой вероятностью обнаружения и их однозначное отождествление.
В известном техническом решении не предусмотрены меры по использованию информации об угловом положении источника ГИ относительно ГВ-детектора и вектора поляризации детектируемой ГВ. В отличие от известного технического решения в заявляемом изобретении параллельно расположенные два дополнительных глухих зеркала только в первом резонаторе обеспечивают ГВ-воздействие детектируемого периодического низкочастотного ГВ-сигнала на оптическое излучение только первого оптического резонатора через изменение показателя преломления вдоль оптического пути распространения излучения только между двумя дополнительными глухими зеркалами, приводящем к набегу фаз по закону изменения детектируемого ГВ-сигнала от источника с известной угловой координатой с амплитудной модуляцией по закону вращения Земли, что и обеспечивает пеленгацию источника ГВ-сигнала.
Таким образом, в заявляемом ГВ-детекторе на основе активного лазера стоячих волн с двумя резонаторами после введения в первый резонатор между первым глухим зеркалом и разделительным зеркалом двух параллельно размещенных глухих зеркал появляется возможность пеленгования источников низкочастотных ГВ-сигналов.
Функциональная схема заявляемого устройства представлена на чертеже.
Активная среда 1, служащая для генерации лазерного излучения, расположена между первым глухим зеркалом 2 и полупрозрачным зеркалом 3. По ходу отраженного от полупрозрачного зеркала 3 оптического излучения, исходящего из активной среды 1, последовательно расположены первый поляризатор 4, второе дополнительное глухое зеркало 5, первое дополнительное глухое зеркало 6, первое глухое зеркало 7 и образуют первый резонатор. По ходу прошедшего через разделительное зеркало 3 оптического излучения, исходящего из активной среды 1, последовательно расположены второй линейный поляризатор 8, третье глухое зеркало 9, которые образуют второй резонатор. По ходу прошедшего излучения первого резонатора через разделительное зеркало 3 и отраженного оптического излучения второго резонатора от разделительного зеркала 3 расположены последовательно линейный поляризатор 10, фотоприемник 11 и блок обработки сигналов 12.
Устройство работает следующим образом.
Оптическое излучение с полным набором поляризаций, выходя из активной среды 1, попадает на полупрозрачное разделительное зеркало 3. Часть оптического излучения с ТЕ-поляризацией, отражаясь от полупрозрачного разделительного зеркала 3, проходя через первый поляризатор 4, отражается от второго 5 и первого 6 дополнительных глухих зеркал и автоколлимационно от второго глухого зеркала 7. После этого оптическое излучение, отраженное от зеркала 7, вновь последовательно отражаясь от первого 6 и второго 5 дополнительных глухих зеркал, пройдя через первый поляризатор 4, частично отражаясь от полупрозрачного разделительного зеркала 3, проходит через активную среду 1 и автоколлимационно отражается от первого глухого зеркала 2, обеспечивая генерацию стоячей волны ТЕ-поляризации в первом резонаторе. Другая часть излучения с ТМ-поляризацией, проходя через полупрозрачное разделительное зеркало 3, второй поляризатор 8 с ТМ-поляризацией, автоколлимационно отражается от третьего глухого зеркала 9, после чего вновь проходит через второй поляризатор 8, разделительное зеркало 3, активную среду 1 и автоколлимационно отражается от первого глухого зеркала 2, обеспечивая генерацию стоячей волны ТМ-поляризации во втором резонаторе. Благодаря первому 4 и второму 8 поляризаторам происходит генерация оптических излучений на взаимно ортогональных линейных поляризациях в геометрически неэквивалентных первом и втором резонаторах. Полупрозрачное разделительное зеркало 3 размещается так, чтобы угол γ между падающим на зеркало 3 и отраженным от него оптическим лучом был меньше 45°. Кроме того, геометрические длины между зеркалами удовлетворяют условию:
где L1 - длина оптического излучения (геометрическая длина) между полупрозрачным зеркалом 3 и глухим третьим зеркалом 9, L2 - между вторым глухим зеркалом 7 и первым дополнительным глухим зеркалом 5, L3 - между вторым дополнительным глухим зеркалом 5 и полупрозрачным разделительным зеркалом 3.
Поскольку угол γ меньше 45°, то с учетом (1) и параллельности оптических излучений между глухими зеркалами 7 и 6 и глухим зеркалом 6 и полупрозрачным разделительным зеркалом 3 диэлектрические проницаемости между зеркалом 7 и разделительным зеркалом 3 (без учета отрезка оптического излучения между зеркалами 6 и 5) первого резонатора и полупрозрачным разделительным зеркалом 3 и третьим глухим разделительным зеркалом 9 (и возможного эластодинамического) отклика на гравитационное излучение с любого пространственного направления будут равны и иметь одинаковый знак, что приведет к нулевому эффекту на выходе фотоприемника 11. В определенный момент времени при вращении Земли плоскость фронта детектируемого ГВ-сигнала окажется параллельной к плоскостям параллельно размещенных зеркал 6 и 5.
Будем иметь в виду одно важное обстоятельство [6]. Вертикальный вектор поляризации детектируемого ГИ при оптимальном пространственном выборе этого источника всегда параллелен зеркалам 6 и 5, а параллельность горизонтального вектора поляризации ГИ зеркалам 6 и 5 с учетом вращения Земли будет меняться как cosθ, где θ - величина угла, характеризующего отклонение от параллельности плоскости фронта детектируемого ГИ (параллельности горизонтального вектора поляризации к зеркалам 6 и 5). Это в результате электродинамического отклика оптического излучения на ГИ (на детектируемый ГВ-сигнал) на участке длиной L между зеркалами 6 и 5 (изменение показателя преломления вдоль оптического пути между этими зеркалами) приведет к фазовой модуляции оптического излучения в первом резонаторе по закону изменения детектируемого ГВ-сигнала и к амплитудной модуляции выходного с фотоприемника 11 сигнала по закону вращения Земли. По максимуму выходного сигнала с фотоприемника 11 и определяется угловое положение источника ГИ относительно зеркал 6 и 5. Излучение первого и второго резонаторов, выходящее через общее разделительное полупрозрачное зеркало 3, после прохождения через линейный поляризатор 10, имеющий плоскость пропускания, наклоненную под углом 45° к электрическим векторам генерируемых излучений в первом и втором резонаторах, образует интерференционное поле, которое регистрируется фотоприемником 11.
Выходной сигнал с фотоприемника 11 (сдвиг частоты первого резонатора, обусловленный воздействием ГВ только на оптическое излучение между зеркалами 6 и 5) будет определяться выражением
где Ω1 - собственная частота первого резонатора в отсутствии ГИ, h - безразмерная амплитуда детектируемого ГВ-сигнала, Ωg и φg - частота и начальная фаза ГВ, α - угол падения оптического излучения на зеркала 6 и 5, β - угол между вектором вертикальной поляризации ГВ-сигнала и зеркалами 6 и 5.
Сигнал, определяемый выражением (2), далее поступает в блок обработки сигналов 12, где осуществляется совместная корреляционно-фильтровая обработка этого сигнала (включая внутрипериодную и межпериодную обработку), согласованного с ожидаемым ГВ-сигналом.
Из анализа (2) видно, что такие параметры гравитационного излучения, как детектируемая амплитуда h, его частота Ωg и направление θ (с учетом вращения Земли) на источник излучения, а следовательно, и векторы поляризации, известны. Неполная информация о величине h (только теоретически рассчитываемая) и отсутствие информации о начальной фазе φg устраняется путем сканирования по амплитуде h и фазе φg моделируемого (имитируемого) в блоке БОС 12 ГВ-сигнала и используемого для корреляционно-фильтровой обработки в блоке 12.
Выбор источника ГВ определяет ориентацию установки ГВ-детектора. Плоскость стола (основание детектора) располагается горизонтально, зеркала резонатора закрепляются перпендикулярно к этой плоскости. Параллельно размещенные два зеркала рассматриваемого участка резонатора устанавливаются относительно местного меридиана таким образом, чтобы в момент пересечения источником плоскости математического горизонта в процессе вращения Земли плоскости зеркал были перпендикулярны к вектору направления на источник, а следовательно, вектор горизонтальной поляризации детектируемого ГИ будет параллелен этим зеркалам. Тогда отклик ГВ-детектора будет определяться в основном набегом фаз оптического излучения, вызванным изменением показателей преломления вдоль оптического пути между этими зеркалами (через пространственно-анизотропные изменения диэлектрической проницаемости вакуума) и приемная диаграмма направленности ГВ-детектора будет определяться только оптическим излучением между этими зеркалами. Дополнительная информация об источниках гравитационного излучения - частота, угловые координаты, векторы поляризации и время наступления максимальной амплитуды гравитационного излучения - существенно облегчит оптимальную обработку сигналов с выхода фазового приемника.
Как известно [7], системы измерения угловых координат, иначе системы пеленгации, могут содержать один или несколько каналов. Одноканальные методы пеленгации при этом, как в данном случае, основаны на использовании зависимости амплитуды принятого сигнала от разности углов между направлением максимума диаграммы направленности антенной системы и направлением прихода радиоволн от источника. В случае заявляемого устройства это разность углов между направлением на параллельно размещенные зеркала 6 и 5 (максимум принимаемого ГВ-сигнала от источника) и направлением прихода ГВ-сигнала от источника, а ширина диаграммы направленности пеленгатора в горизонтальной плоскости будет определяться временем отклонения от параллельности горизонтального вектора поляризации ГИ зеркалам 6 и 5 от θ=-90° до θ=90°.
Изменение выходного сигнала фотоприемника 11 по закону cosθ (2) со скоростью вращения Земли можно характеризовать как закон изменения диаграммы направленности ГВ-детектора в горизонтальной плоскости, а сам ГВ-детектор как ГВ-пеленгатор углового направления на источник низкочастотного ГИ от двойных релятивистских астрофизических объектов.
В связи с тем что в плоскости математического горизонта в процессе вращения Земли наличие источников низкочастотного гравитационного излучения на одинаковой частоте исключено, то даже при столь широкой диаграмме направленности рассматриваемого ГВ-пеленгатора, разрешающая способность ГВ-пеленгатора по направлению будет определяться высокой разрешающей способностью по частоте.
Таким образом, заявляемое устройство выгодно отличается от прототипа тем, что введенные в первый резонатор элементы и взаимное их размещение, а также размещение остальных элементов обоих резонаторов относительно друг друга, использование информации о пространственном положении источника детектируемого периодического ГВ-сигнала от двойных релятивистских астрофизических объектов, то есть информации о векторах поляризации детектируемых ГВ-сигналов, приводит к тому, что такой ГВ-детектор становится ГВ-пеленгатором для определения направления на источник гравитационного излучения.
Источники информации
1. Милюков В.К., Руденко В.Н. // Итоги науки и техники ВИНИТИ АН СССР, серия Астрономия, 1991, т.41, с.147-193.
2. Балакин А.Б., Кисунько Г.В., Мурзаханов З.Г., Русяев Н.Н. // ДАН СССР, 1991, т.316, №5, с.1122-1125.
3. Balakin А.В., Murzakhanov Z.G., Skochilov A.F. // Gravitation & Cosmology, 1997, Vol.3, N1(9), pp.71-81.
4. Балакин А.Б., Кисунько Г.В., Мурзаханов З.Г., Скочилов А.Ф. // ДАН России, 1998, т.361, №4, с.477-480.
5. Scully M.O. and Gea-Banacloche J. // Phys. Rev., 1986, A 34, pp.4043-4054. (ПРОТОТИП)
6. Э.Амальди, Г.Пицелла. Поиск гравитационных волн // Астрофизика, кванты и теория относительности, стр.241-397, М., 1982.
7. Я.Д.Ширман и др. Теоретические основы радиолокации. М.; Изд. «Советское радио», 1970, 560 стр.
название | год | авторы | номер документа |
---|---|---|---|
ГРАВИТАЦИОННО-ВОЛНОВОЙ ДЕТЕКТОР | 2010 |
|
RU2431159C1 |
ГРАВИТАЦИОННО-ВОЛНОВОЙ ДЕТЕКТОР | 2011 |
|
RU2475785C1 |
ГРАВИТАЦИОННО-ВОЛНОВОЙ ДЕТЕКТОР | 2010 |
|
RU2454685C1 |
ГРАВИТАЦИОННО-ВОЛНОВОЙ ДЕТЕКТОР | 2006 |
|
RU2313807C1 |
ГРАВИТАЦИОННО-ВОЛНОВОЙ ДЕТЕКТОР | 2008 |
|
RU2367984C1 |
ГРАВИТАЦИОННО-ВОЛНОВОЙ ДЕТЕКТОР | 2006 |
|
RU2311666C1 |
ГРАВИТАЦИОННО-ВОЛНОВОЙ ДЕТЕКТОР | 2000 |
|
RU2171482C1 |
ГРАВИТАЦИОННО-ВОЛНОВОЙ ДЕТЕКТОР | 1999 |
|
RU2156481C1 |
ГРАВИТАЦИОННО-ВОЛНОВОЙ ДЕТЕКТОР | 1999 |
|
RU2167437C1 |
ГРАВИТАЦИОННО-ВОЛНОВОЙ ДЕТЕКТОР | 2000 |
|
RU2171483C1 |
Изобретение относится к лазерно-интерферометрическим гравитационно-волновым (ГВ) детекторам и может быть использовано для обнаружения низкочастотных периодических ГВ-сигналов от двойных релятивистских астрофизических объектов. Сущность изобретения: ГВ-детектор содержит активный элемент и рабочую среду в нем, первое, второе и третье глухие зеркала, полупрозрачное разделительное зеркало, первый и второй поляризаторы, линейный поляризатор, фотоприемник с блоком обработки сигналов. Оптическими элементами образованы два оптических резонатора стоячих волн. Особенность ГВ-детектора состоит в том, что в него введены два дополнительных зеркала, полупрозрачное разделительное зеркало расположено так, что обеспечивает угол отражения оптического луча от него относительно падающего оптического луча менее 45°, причем выполнено равенство между суммой геометрических длин от второго глухого зеркала до первого дополнительного глухого зеркала и от второго дополнительного глухого зеркала до полупрозрачного разделительного зеркала геометрической длине от полупрозрачного разделительного зеркала до третьего глухого зеркала. Благодаря этому обеспечивается реакция ГВ-детектора на гравитационное излучение только с вектором горизонтальной поляризации, параллельным двум введенным глухим зеркалам, что обеспечивает пеленгацию гравитационного излучения от низкочастотных периодических релятивистских астрофизических объектов. 1 ил.
Гравитационно-волновой детектор, содержащий активный элемент и рабочую среду в нем, первое, второе и третье глухие зеркала, полупрозрачное разделительное зеркало, первый и второй поляризаторы, линейный поляризатор, фотоприемник с блоком обработки сигналов на его выходе, причем размещенные на пути оптического излучения первое глухое зеркало, активный элемент, полупрозрачное разделительное зеркало, первый поляризатор и второе глухое зеркало являются элементами первого оптического резонатора стоячих волн, первое глухое зеркало, активный элемент, полупрозрачное разделительное зеркало, второй поляризатор с ортогональной поляризацией к первому поляризатору и третье глухое зеркало образуют второй оптический резонатор стоячих волн, а оптические излучения обоих резонаторов на взаимно ортогональных линейных поляризациях с выхода полупрозрачного разделительного зеркала через линейный поляризатор поступают на вход фотоприемника, отличающийся тем, что в состав первого резонатора между вторым глухим зеркалом и первым поляризатором введены параллельно размещенные первое и второе дополнительные глухие зеркала, причем сумма геометрических длин от второго глухого зеркала до первого дополнительного глухого зеркала и от второго дополнительного глухого зеркала до полупрозрачного разделительного зеркала первого оптического резонатора равна геометрической длине от полупрозрачного разделительного зеркала до третьего глухого зеркала второго оптического резонатора, а угол между падающим от активного элемента оптическим лучом на полупрозрачное разделительное зеркало и отраженным от него оптическим лучом составляет меньше 45°, выходом гравитационно-волнового детектора является выход блока обработки сигналов.
SCULLY М.О, GEA-BANACLOCHE J, Phys | |||
Rev, 1986, А 34, рр.4043-4054 | |||
ГРАВИТАЦИОННО-ВОЛНОВОЙ ДЕТЕКТОР | 2000 |
|
RU2171482C1 |
ГРАВИТАЦИОННО-ВОЛНОВОЙ ДЕТЕКТОР | 1999 |
|
RU2167437C1 |
ГРАВИТАЦИОННО-ВОЛНОВОЙ ДЕТЕКТОР | 1999 |
|
RU2156481C1 |
Авторы
Даты
2011-02-27—Публикация
2009-09-02—Подача