Изобретение относится к строительству и может быть использовано при строительстве высотных зданий с монолитным железобетонным каркасом.
Известны конструкции аутригерных систем, использующие диафрагмы жесткости и диафрагмы-аутригеры для восприятия ветровых нагрузок в высотных зданиях с ядром жесткости. При этом диафрагмы жесткости соединяют ядро с конструкциями, выходящими на фасад, а диафрагмы-аутригеры образуют выносную систему аутригеров в виде железобетонных стен толщиной, например, 200 мм, объединяющих колонны, расположенные по периметру здания (Виктор Тур, Михаил Марковский, Александр Щербач «Новое в строительстве высотных зданий из железобетона», дата публ. 26.03.2009, журнал «Архитектура и строительство», стр.2, 3, рис.7, 11, 12).
Недостатком известных аутригерных систем является, в частности, уменьшение полезного пространства помещений, а также недостаточная пространственная жесткость и подверженность горизонтальным деформациям вследствие нерационального использования связей ядра с периметральными колоннами здания.
В качестве прототипа принят аутригер высотного здания с ядром в виде горизонтального пояса жесткости, представляющего собой систему перекрещивающихся ферм, включающую опоясывающую металлическую ферму, расположенную по наружным колоннам, и вертикальные металлические связи, соединяющие ферму с центральным ядром в здании прямоугольного очертания, причем для достижения одного из главных показателей эффективности использования конструкции аутригера, а именно наименьшего горизонтального перемещения верха здания, вертикальные связи установлены в каждом шаге колонн (В.И.Травуш, Д.В.Конин «Работа высотных зданий с применением этажей жесткости», вестник ТГАСУ №2, 2009, стр.83, рис.5, прототип).
Недостатком прототипа является низкая эффективность использования вследствие значительного уменьшения полезного пространства из-за наличия пересекающихся вертикальных связей в виде раскосных ферм, установленных в каждом шаге колонн, а также высокая стоимость конструкции и низкая огнестойкость из-за высокой материалоемкости металлических ферм.
Задачей изобретения является создание эффективного горизонтального пояса жесткости путем монолитного возведения, обеспечивающего пространственную жесткость конструкции, минимальное горизонтальное перемещение верха здания, увеличение полезного пространства и огнестойкости, а также снижение стоимости.
Для решения поставленной задачи горизонтальный пояс жесткости высотного здания с центральным ядром жесткости, содержащий жесткую пространственную конструкцию, образованную опоясывающим центральное ядро ограждением, расположенным по периметральным колоннам каркаса, и вертикальными связями, соединяющими ограждение с центральным ядром, согласно изобретению выполнен коробчатого типа в виде монолитно возведенного из железобетона технического этажа круглого или многогранного очертания и образован перекрытиями, кольцевыми коаксиально расположенными стенами, наружная из которых выполнена ограждающей, а внутренняя образована центральным ядром, и радиальными стенами, соединяющими равномерно расположенные периметральные колонны каркаса с центральным ядром, а над радиальными стенами и под ними в верхнем и нижнем этажах, примыкающих к техническому этажу, выполнены радиальные ребра жесткости, соединенные с центральным ядром здания.
Согласно изобретению технический этаж снабжен промежуточной кольцевой стеной, повышающей пространственную жесткость конструкции.
Согласно изобретению для снижения материалоемкости в радиальных стенах выполнены проемы, а радиальные ребра жесткости, расположенные под техническим этажом, выполнены с наружной гранью вогнутого очертания.
На фиг.1 схематично изображена конструкция горизонтального пояса жесткости, выполненного в верхнем этаже здания, вид в плане; на фиг.2 - разрез А-А на фиг.1.
Горизонтальный пояс жесткости выполнен коробчатого типа в виде монолитно возведенного из железобетона технического этажа круглого очертания, усиленного ребрами жесткости. Технический этаж образован конструктивными элементами, включающими перекрытия 1, кольцевые коаксиально расположенные и радиальные стены. Наружная кольцевая стена 2 выполнена ограждающей и сформирована по периметральным колоннам 3 каркаса здания, равномерно расположенным по его периметру. Внутренняя стена образована центральным ядром 4. Между ограждающей стеной 2 и центральным ядром 4 выполнена промежуточная кольцевая стена 5. Для обеспечения максимальной пространственной жесткости конструкции все периметральные колонны 3 соединены с центральным ядром 4 с помощью радиальных стен 6, в которых могут быть выполнены технологические проемы 7, а над техническим этажом и под ним, по месту расположения радиальных стен 6, выполнены радиальные ребра жесткости 8, 9. При этом нижние ребра жесткости 9 выполнены с наружной гранью 10 вогнутого очертания.
Конструктивные и технологические особенности горизонтального пояса жесткости способствуют тому, что при возникновении ветровой нагрузки с помощью горизонтального пояса жесткости включаются в работу периметральные колонны каркаса. При этом изгибающий момент, создаваемый ветровой нагрузкой, частично воспринимается центральным ядром жесткости и частично - периметральными колоннами, которые препятствуют горизонтальному перемещению ядра и догружаются вертикальной нагрузкой от момента. Степень совместной работы центрального ядра и периметральных колонн повышается с увеличением числа поясов и их рациональным размещением по высоте здания.
Таким образом, основным преимуществом использования в высотных зданиях горизонтального пояса жесткости, монолитно возведенного из железобетона и обладающего ввиду конструктивных особенностей значительной пространственной жесткостью и высокой степенью совместной работы центрального ядра и периметральных колонн, является высокая сопротивляемость действию динамических горизонтальных воздействий, способствующая уменьшению горизонтальной деформации здания, обуславливающей минимальное горизонтальное перемещение верха здания и возвращение деформированного центрального ствола в вертикальное положение. Кроме этого, эффективность использования горизонтального пояса жесткости заключается также в увеличении полезного пространства и повышении огнестойкости.
название | год | авторы | номер документа |
---|---|---|---|
КРУГЛАЯ ПЛИТА ПЕРЕКРЫТИЯ | 2010 |
|
RU2412312C1 |
СПОСОБ СТРОИТЕЛЬСТВА МНОГОЭТАЖНЫХ ЗДАНИЙ ИЗ ОБЪЕМНЫХ БЛОКОВ | 2016 |
|
RU2616306C1 |
ВЫСОТНОЕ ЗДАНИЕ | 2007 |
|
RU2350717C1 |
СПОСОБ НАДСТРОЙКИ ЗДАНИЙ | 2010 |
|
RU2442868C1 |
Каркас многоэтажного промышленного здания | 1991 |
|
SU1801167A3 |
СПОСОБ РЕКОНСТРУКЦИИ И НАДСТРОЙКИ ЗДАНИЙ | 2015 |
|
RU2598615C1 |
НАДСТРОЙКА ЗДАНИЯ И СПОСОБ ЕЕ ОСУЩЕСТВЛЕНИЯ ПРИ РЕКОНСТРУКЦИИ | 2013 |
|
RU2579073C2 |
ЗДАНИЕ МНОГОФУНКЦИОНАЛЬНОГО НАЗНАЧЕНИЯ | 2007 |
|
RU2345200C2 |
РЕКОНСТРУИРОВАННОЕ ЗДАНИЕ И СПОСОБ РЕКОНСТРУКЦИИ МАЛОЭТАЖНОГО ЗДАНИЯ | 2015 |
|
RU2597901C1 |
ЗДАНИЕ И СПОСОБ ЕГО ВОЗВЕДЕНИЯ | 1994 |
|
RU2114961C1 |
Изобретение относится к строительству, в частности к горизонтальному поясу жесткости высотных зданий с монолитным железобетонным каркасом. Технический результат заключается в уменьшении горизонтальной деформации здания. Горизонтальный пояс жесткости выполнен коробчатого типа в виде монолитно возведенного из железобетона технического этажа круглого или многогранного очертания. Горизонтальный пояс жесткости образован перекрытиями, кольцевыми коаксиально расположенными стенами, наружная из которых выполнена ограждающей, а внутренняя образована центральным ядром, и радиальными стенами, соединяющими равномерно расположенные периметральные колонны каркаса с центральным ядром. Над радиальными стенами и под ними в верхнем и нижнем этажах, примыкающих к техническому этажу, выполнены радиальные ребра жесткости, соединенные с центральным ядром здания. 3 з.п. ф-лы, 2 ил.
1. Горизонтальный пояс жесткости высотного здания с центральным ядром жесткости, содержащий жесткую пространственную конструкцию, образованную опоясывающим центральное ядро ограждением, расположенным по периметральным колоннам каркаса, и вертикальными связями, соединяющими ограждение с центральным ядром, отличающийся тем, что он выполнен коробчатого типа в виде монолитно возведенного из железобетона технического этажа круглого или многогранного очертания и образован перекрытиями, кольцевыми коаксиально расположенными стенами, наружная из которых выполнена ограждающей, а внутренняя образована центральным ядром, и радиальными стенами, соединяющими равномерно расположенные периметральные колонны каркаса с центральным ядром, а над радиальными стенами и под ними в верхнем и нижнем этажах, примыкающих к техническому этажу, выполнены радиальные ребра жесткости, соединенные с центральным ядром здания.
2. Горизонтальный пояс жесткости по п.1, отличающийся тем, что технический этаж снабжен промежуточной кольцевой стеной.
3. Горизонтальный пояс жесткости по п.1, отличающийся тем, что в радиальных стенах выполнены проемы.
4. Горизонтальный пояс жесткости по п.1, отличающийся тем, что радиальные ребра жесткости, расположенные под техническим этажом, выполнены с наружной гранью вогнутого очертания.
ТРАВУШ В.И., КОНИН Д.В | |||
Работа высотных зданий с применением этажей жесткости, вестник ТГАСУ N2, 2009, с.83, рис.5) | |||
ТУР В | |||
и др | |||
Новое в строительстве высотных зданий из железобетона | |||
Архитектура и строительство, 26.03.2009, с.2,3, рис.7, 11, 12 | |||
КОЗАК Ю | |||
Конструкции высотных зданий | |||
- М.: Стройиздат, 1986, с.94-95 | |||
МНОГОЭТАЖНОЕ КРУПНОПАНЕЛЬНОЕ СЕЙСМОСТОЙКОЕ ЗДАНИЕ | 1992 |
|
RU2071537C1 |
Авторы
Даты
2011-03-27—Публикация
2009-11-30—Подача