СПОСОБ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ПОВЕРХНОСТНОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ ИНФРАКРАСНОГО ДИАПАЗОНА Российский патент 2011 года по МПК G01N21/41 

Описание патента на изобретение RU2419779C2

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных твердых тел с отрицательной действительной частью диэлектрической проницаемости, способных направлять поверхностные электромагнитные волны (ПЭВ) [1] в инфракрасном (ИК) диапазоне, а также - для оптической спектроскопии переходного слоя и контроля качества поверхности таких тел.

Известен способ определения показателя преломления ПЭВ ИК-диапазона, включающий измерение интенсивности ПЭВ после пробега волной двух различных расстояний по плоской поверхности образца, измерение периода интерферограммы, регистрируемой на нормали к поверхности в плоскости падения генерирующего ПЭВ излучения и образованной в результате сложения двух объемных волн: реперной и порожденной ПЭВ при ее дифракции на краю образца, а также - расчет искомого показателя преломления по результатам измерений [2]. Основными недостатками способа являются большая продолжительность и низкая точность измерений, что обусловлено следующими причинами: 1) необходимостью изменения расстояния, пробегаемого ПЭВ в процессе измерений; 2) зависимостью диаграмм направленности интерферирующих волн от особенностей дифракционных элементов - края экрана, преобразующего падающее излучение в ПЭВ и порождающего первую объемную волну, и края образца, преобразующего ПЭВ во вторую объемную волну; 3) кривизной волновых фронтов интерферирующих волн, что приводит к зависимости периода и контраста интерферограммы от расстояния до поверхности образца.

Известен способ определения показателя преломления ПЭВ ИК-диапазона, включающий измерение интенсивности ПЭВ после пробега волной двух различных расстояний по плоской поверхности образца, измерения периода интерферограммы, регистрируемой в плоскости, параллельной поверхности образца, направляющей ПЭВ, и образованной в результате сложения двух сонаправленных объемных волн: реперной и волны, порожденной ПЭВ на перемещаемом вдоль трека ПЭВ наклонном зеркале, а также - расчет искомого показателя преломления по результатам измерений [3]. Основной недостаток способа - большая продолжительность измерений, что обусловлено необходимостью перемещения зеркала над образцом на макроскопическое расстояние (несколько сантиметров), на котором ПЭВ приобретает набег фазы порядка 2π.

Наиболее близким по технической сущности к заявляемому способу является способ определения показателя преломления ПЭВ ИК-диапазона, включающий измерение интенсивности ПЭВ после пробега волной двух различных расстояний по плоской поверхности образца, измерение периода интерферограммы, образованной в результате сложения двух пучков лучей исходной ПЭВ и регистрируемой в плоскости, параллельной поверхности образца, а также - расчет искомого показателя преломления по результатам измерений [4]. Основной недостаток способа - низкая точность определения действительной части показателя преломления ПЭВ, что обусловлено сравнимостью периода интерферограммы с размером чувствительного элемента (пикселя) линейки фотоприемников, регистрирующей интерференционную картину.

Техническим результатом, на достижение которого направлено изобретение, является повышение точности определения действительной части показателя преломления поверхностной волны.

Сущность изобретения заключается в том, что в способе определения показателя преломления ПЭВ ИК-диапазона, включающем измерение интенсивности ПЭВ после пробега волной двух различных расстояний по плоской поверхности образца и расчет значения комплексного показателя преломления по результатам измерений, дополнительно измеряют глубину проникновения поля ПЭВ в окружающую образец среду, а расчет действительной и мнимой частей показателя преломления производят по формулам:

где к1 - действительная часть показателя преломления ПЭВ; к2 - мнимая часть показателя преломления ПЭВ;

λ - длина объемной волны, генерирующей ПЭВ, в вакууме;

δ - глубина проникновения поля ПЭВ в окружающую образец среду с диэлектрической проницаемостью ε;

I1 и I2 - интенсивность поля ПЭВ после пробега волной расстояний l1 и l2 (причем l2>l1).

Повышение точности определения действительной части показателя преломления ПЭВ в предлагаемом способе достигается в результате отказа от интерферометрических измерений и проведения вместо них измерения глубины проникновения поля ПЭВ в окружающую образец среду за время одного импульса возбуждающего ПЭВ излучения.

Покажем, каким образом можно определить к1 не прибегая к интерферометрическим измерениям (как это необходимо делать в способе прототипе). Известно, что глубину проникновения поля ПЭВ в окружающую образец среду с диэлектрической проницаемостью ε можно рассчитать по формуле [1]: где

Решив систему двух последних уравнений относительно к1, получим формулу (1). Таким образом, измерив δ и определив к2, по изменению интенсивности ПЭВ на расстоянии (l2-l1), можно определить величину к1 не прибегая к интерферометрии.

На чертеже приведена схема устройства, реализующего предлагаемый способ, где цифрами обозначены: 1 - источник p-поляризованного монохроматического излучения, 2 - элемент преобразования объемного излучения в ПЭВ, 3 - образец, способный направлять ПЭВ и имеющий плоскую поверхность, 4 - уголковое зеркало, установленное на поверхности образца и ориентированное своими отражающими гранями перпендикулярно к ней, 5 - фокусирующие геодезические линзы, 6 - линейки фотоприемников, размещенные в фокальных плоскостях линз 5 перпендикулярно поверхности образца 3 и сопряженные с измерительными приборами G1 и G2, электрические сигналы с которых поступают в блок обработки информации 7.

Устройство работает и способ осуществляется следующим образом. Излучение источника 1 направляют на элемент 2, преобразующий объемную волну в параллельный пучок лучей ПЭВ на плоской поверхности образца 3. Исходный пучок ПЭВ достигает зеркала 4, разделяющего его на два одинаковых по энергии новых пучка ПЭВ. Эти пучки распространяются в противоположных направлениях и, пройдя различные расстояния l1 и l2, достигают линз 5. Пучки ПЭВ концентрируются на приемники соответствующих линеек 6 и порождают в них электрические сигналы, пропорциональные интенсивности поля ПЭВ на расстоянии данного приемника от поверхности образца 3. Сигналы измеряются приборами G1, G2 и поступают в блок 7, который вначале интегрирует сигналы с каждой линейки в отдельности и таким образом получает значения I1 и I2. Затем, располагая значениями I1, I2, l1, l2 и λ, блок 7 по формуле (2) рассчитывает к2. На втором этапе расчетов блок 7 по известным координатам приемников линеек 6 и значениям сигналов, поступивших с них, рассчитывает величину 6 и, располагая известной величиной ε и вычисленным к2, по формуле (1) определяет значение к1 Отметим, что устройство не содержит подвижных элементов и это позволяет выполнять измерения за время одного импульса излучения, возбуждающего ПЭВ.

В качестве примера применения заявляемого способа рассмотрим возможность определения показателя преломления ПЭВ, генерируемых на поверхности плоского алюминиевого образца, размещенного в воздухе (ε=1,00054), лазерным излучением с λ=110 мкм и длительностью импульсов 3 мкс [2]. Диаметр d поперечного сечения пучка излучения источника выберем равным 2,0 см, а в качестве элемента преобразования 2 - планарную дифракционную решетку с периодом 500 мкм и амплитудой гофра 100 мкм, длина и ширина которой не меньше d. Положим, что линзы 5 выполнены в виде сферических углублений в поверхности образца 3, имеющих диаметр 25 мм и образующий радиус, равный 20 мм; фокусное расстояние такой линзы равно 30 мм [5]. В качестве приемников излучения выберем линейки 6 длиной 16 мм с размером пикселя, равным 1 мкм (как в прототипе).

Пусть от граней зеркала 4 до линеек 6 пучки ПЭВ проходят расстояния l1=50 мм и l2=150 мм, при этом отношение сумм сигналов, поступающих в блок 7 от приборов G1 и G2, равно 1,95. Тогда согласно формуле (2) величина мнимой части показателя преломления такой ПЭВ к2=1,17×10-4.

Далее предположим, что отношение IN/Io=0,32 (где Io - интенсивность поля ПЭВ, измеренная расположенным на уровне поверхности образца приемником любой из матриц, IN - интенсивность поля ПЭВ на уровне наиболее удаленного от поверхности образца приемника любой из матриц; в нашем случае это расстояние zmax=16 мм). Тогда глубина проникновения поля ПЭВ в воздух равна: .

Подставив в (1) найденные значения δ и к2, получим к1=1,0003. Окончательно имеем, что показатель преломления ПЭВ в рассматриваемом примере к=1,0003+1,17×10-4.

Оценим точность определения к1 заявляемым способом. Поскольку размер одного фотоприемного пикселя равен 1 мкм, то относительная ошибка определения к1 составит 10-4, т.е. 0,01%. При прочих равных условиях, точность определения к1 способом, взятым в качестве прототипа, на порядок меньше и составляет всего 0,1%.

Таким образом, измерение глубины проникновения поля ПЭВ в окружающую образец среду вместо измерения периода интерферограммы, полученной с участием ПЭВ, позволяет на порядок повысить точность определения действительной части комплексного показателя преломления ИК ПЭВ.

Источники информации

1. Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред / Под ред. В.М.Аграновича и Д.Л.Миллса. - М.: Наука, 1985. - 525 с.

2. Bogomolov G.D., Jeong U.Y., Zhizhin G.N., Nikitin A.K. et al. Generation of surface electromagnetic waves in terahertz spectral range by free-electron laser radiation // Nuclear Instruments and Methods in Physics Research (A), 2005, V.543, No.1, p.96-101.

3. Жижин Г.Н., Никитин А.К., Рыжова ТА. Способ определения диэлектрической проницаемости металлов в инфракрасном диапазоне спектра // Патент РФ на изобр. №2263923. - Бюл. №31 от 10.XI.2005 г.

4. Богомолов Г.Д., Жижин Г.Н., Кирьянов А.П., Никитин А.К., Хитров О.В. Определение показателя преломления поверхностных плазмонов ИК-диапазона методом статической ассиметричной интерферометрии // Известия РАН. Серия физическая. - 2009, т.73, №4, с.562-565 (прототип).

5. Bogomolov G.D., Zhizhin G.N., Nikitin А.К., Knyazev B.A. Geodesic elements to control terahertz surface plasmons // Nuclear Instruments and Methods in Physics Research (A), 2009, V.603, No.1/2, p.52-55.

Похожие патенты RU2419779C2

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ТВЕРДЫХ ТЕЛ В ИНФРАКРАСНОМ ДИАПАЗОНЕ СПЕКТРА 2004
  • Жижин Г.Н.
  • Никитин А.К.
  • Рыжова Т.А.
RU2263923C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ПОВЕРХНОСТНОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ ИНФРАКРАСНОЙ ОБЛАСТИ СПЕКТРА 2008
  • Жижин Герман Николаевич
  • Кирьянов Анатолий Павлович
  • Никитин Алексей Константинович
  • Хитров Олег Владимирович
RU2372591C1
Интерферометр для определения показателя преломления инфракрасной поверхностной электромагнитной волны 2017
  • Никитин Алексей Константинович
  • Князев Борис Александрович
  • Герасимов Василий Валерьевич
  • Хасанов Илдус Шевкетович
RU2653590C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ МЕТАЛЛА В ТЕРАГЕРЦОВОМ ДИАПАЗОНЕ СПЕКТРА 2016
  • Никитин Алексей Константинович
  • Князев Борис Александрович
  • Герасимов Василий Валерьевич
RU2634094C1
ПЛАЗМОННЫЙ СПЕКТРОМЕТР ТЕРАГЕРЦОВОГО ДИАПАЗОНА ДЛЯ ИССЛЕДОВАНИЯ ПРОВОДЯЩЕЙ ПОВЕРХНОСТИ 2006
  • Жижин Герман Николаевич
  • Никитин Алексей Константинович
  • Балашов Анатолий Александрович
  • Рыжова Татьяна Александровна
RU2318192C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ОДНОРОДНОГО НАНОСЛОЯ В ИНФРАКРАСНОМ ИЗЛУЧЕНИИ 2012
  • Никитин Алексей Константинович
  • Кирьянов Анатолий Павлович
  • Жижин Герман Николаевич
  • Чудинова Галина Константиновна
RU2470257C1
СПОСОБ ДИЭЛЕКТРИЧЕСКОЙ СПЕКТРОСКОПИИ ТОНКОГО СЛОЯ НА ПОВЕРХНОСТИ ТВЕРДОГО ТЕЛА В ИНФРАКРАСНОМ ДИАПАЗОНЕ 2010
  • Жижин Герман Николаевич
  • Никитин Алексей Константинович
  • Хитров Олег Владимирович
RU2432579C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАБЕГА ФАЗЫ МОНОХРОМАТИЧЕСКОЙ ПОВЕРХНОСТНОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ ИНФРАКРАСНОГО ДИАПАЗОНА 2012
  • Кирьянов Анатолий Павлович
  • Князев Борис Александрович
  • Никитин Алексей Константинович
  • Хитров Олег Владимирович
RU2491522C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ МЕТАЛЛОВ В ТЕРАГЕРЦОВОМ ДИАПАЗОНЕ 2022
  • Никитин Алексей Константинович
  • Герасимов Василий Валерьевич
RU2786377C1
ИНФРАКРАСНЫЙ АМПЛИТУДНО-ФАЗОВЫЙ ПЛАЗМОННЫЙ СПЕКТРОМЕТР 2014
  • Герасимов Василий Валерьевич
  • Князев Борис Александрович
  • Никитин Алексей Константинович
  • Та Тху Чанг
RU2573617C1

Реферат патента 2011 года СПОСОБ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ПОВЕРХНОСТНОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ ИНФРАКРАСНОГО ДИАПАЗОНА

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных твердых тел с отрицательной действительной частью диэлектрической проницаемости. Способ включает измерение интенсивности поверхностной электромагнитной волны (ПЭВ) после пробега волной двух различных расстояний по плоской поверхности образца и глубины проникновения поля ПЭВ в окружающую образец среду. Расчет действительной и мнимой частей показателя преломления проводят по формулам:

где к1 - действительная часть показателя преломления ПЭВ; к2 - мнимая часть показателя преломления ПЭВ; k0=2π/λ, λ - длина объемной волны, генерирующей ПЭВ, в вакууме; δ - глубина проникновения поля ПЭВ в окружающую образец среду с диэлектрической проницаемостью ε; I1 и I2 - интенсивность поля ПЭВ после пробега волной расстояний l1 и l2 (причем l2>l1). Изобретение позволяет повысить точность определения действительной части показателя преломления поверхностной волны. 1 ил.

Формула изобретения RU 2 419 779 C2

Способ определения показателя преломления поверхностной электромагнитной волны (ПЭВ) инфракрасного диапазона, включающий измерение интенсивности ПЭВ после пробега волной двух различных расстояний по плоской поверхности образца и расчет значения комплексного показателя преломления по результатам измерений, отличающийся тем, что дополнительно измеряют глубину проникновения поля ПЭВ в окружающую образец среду, а расчет действительной и мнимой частей показателя преломления производят по формулам


где к1 - действительная часть показателя преломления ПЭВ; к2 - мнимая часть показателя преломления ПЭВ;
k0=2π/λ, λ - длина объемной волны, генерирующей ПЭВ, в вакууме;
δ - глубина проникновения поля ПЭВ в окружающую образец среду с диэлектрической проницаемостью ε;
I1 и I2 - интенсивность поля ПЭВ после пробега волной расстояний l1 и l2 (причем l2>l1).

Документы, цитированные в отчете о поиске Патент 2011 года RU2419779C2

БОГОМОЛОВ Г.Д
и др
Определение показателя преломления поверхностных плазмонов методом статистической ассиметричной интерферометрии
Известия РАН
Серия физическая, 2009, т.73, №4, с.52-55
СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ТВЕРДЫХ ТЕЛ В ИНФРАКРАСНОМ ДИАПАЗОНЕ СПЕКТРА 2004
  • Жижин Г.Н.
  • Никитин А.К.
  • Рыжова Т.А.
RU2263923C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ 1998
  • Никитин А.К.
RU2148250C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ОПТИЧЕСКИХ ПАРАМЕТРОВ ПРОВОДЯЩИХ ОБРАЗЦОВ 1998
  • Никитин А.К.
RU2148814C1
US 6801312 B1, 05.10.2004
JP 2000146836 A, 26.05.2000.

RU 2 419 779 C2

Авторы

Никитин Алексей Константинович

Жижин Герман Николаевич

Князев Борис Александрович

Никитин Павел Алексеевич

Мустафина Ольга Магамуровна

Даты

2011-05-27Публикация

2009-07-07Подача