ВЫСОКОТЕМПЕРАТУРНОЕ ТЕПЛОИЗОЛЯЦИОННОЕ ПОКРЫТИЕ ДЛЯ СТАЛЬНЫХ ТРУБНЫХ ЭЛЕМЕНТОВ Российский патент 2011 года по МПК F16L59/02 

Описание патента на изобретение RU2422716C1

Изобретение относится к теплоэнергетике, в частности к теплоизоляции стальных трубных элементов теплотрассы, эксплуатируемых без гидрозащитной оболочки, а также энергоэффективной и энергосберегающей технологии в области теплоснабжения.

Известно теплоизоляционное покрытие для стальных труб, включающее жидкокерамическую основу с микросферами диметром 15-150 мкм, и способ его формирования, включающий нанесение покрытия на стальную трубу и последующую сушку (см. патент RU 2352601, опубл. 20.04.2009). Недостатком известного покрытия является его недолговечность, связанная с несоответствием термического расширения покрытия термическому расширению трубы.

Задачей заявленного изобретения является устранение указанного недостатка. Технический результат заключается в увеличении срока службы покрытия и снижении вредного воздействия на организм человека и окружающую среду. Поставленная задача решается, а технический результат достигается в части устройства тем, что в теплоизоляционном покрытии для стальных трубных элементов, включающем жидкокерамическую основу с микросферами диметром 15-150 мкм, эта основа состоит из негорючих неорганических компонентов, включающих (в массовых процентах): 0,4-0,6 аэросила, 6-8 вспученного перлита, 5-7 β-эвкриптита с отрицательным коэффициентом термического расширения, 0,8-1,2 молотой слюды, 2-4 оксидов кремния и/или титана, 18-20 стеклянных микросфер и 62,5-64,5 связующего в виде жидкого натриевого или калиевого стекла, причем покрытие выполнено толщиной 4-12 мм, и каждые на 4-5 мм покрытия содержат, по меньшей мере, 3 слоя армирующей стеклосетки.

На чертеже представлено предлагаемое покрытие.

Теплоизоляционное покрытие для стальных труб 1 представляет собой жидкокерамическую основу 2, проложенную для прочности армирующей сеткой 3. Покрытие выполняют толщиной 4-12 мм, и каждые на 4-5 мм покрытия содержат, по меньшей мере, 3 слоя стеклосетки толщиной 0,12-0,15 мм. Основа покрытия имеет следующий состав негорючих неорганических компонентов: 0,4-0,6 аэросила, 6-8 вспученного перлита, 5-7 β-эвкриптита с отрицательным коэффициентом термического расширения, 0,8-1,2 молотой слюды, 2-4 оксидов кремния и/или титана, 18-20 стеклянных микросфер диметром 15-150 мкм и 62,5-64,5 связующего в виде жидкого натриевого или калиевого стекла.

Предлагаемая система по коэффициентам термического расширения теплоизоляционного покрытия жидкокерамического происхождения соответствует подложке (стальная конструкция), на поверхность которой оно наносится. Такая система позволяет одновременно нанести слой покрытия толщиной 4-5 мм в отличие от существующих аналогичных жидкокерамических покрытий, где толщина одноразового нанесенного слоя изоляции составляет не более 0,3-0,4 мм. Применение армирующей стеклосетки при наборе толщины изоляционного слоя повышает надежность и долговечность покрытия, особенно при термоударах и повышенных температурах теплоносителя в условиях эксплуатации.

Главное достоинство предлагаемого покрытия состоит в использовании сбалансированного по коэффициентам термического расширения (КТР) состава изоляции и субстрата (стального трубного элемента или конструкции). Это достигается введением в состав покрытия наполнителя, имеющего отрицательный объемный КТР. По кристаллической структуре подобные наполнители имеют сходства с минералом нефелином, получаемого при высокотемпературной термообработке в вакууме, где происходит частичное вытягивание кристаллической решетки и увеличение ее объема.

В процессе формирования теплоизоляции на поверхности стальных трубных элементов существует большая разница между КТР подложки - стального элемента [α=(0,12-0,14)×10-4 1/°C] и изоляцией [α=(0,28×10-5-0,6×10-6) 1/°C]. Вероятно, это является главной причиной возникновения дефектов в процессе формирования изоляции - микротрещины в объеме и на поверхностных слоях, отрыв изоляции от поверхности субстрата и др. При сбалансированности КТР стальной конструкции и изоляции в пределах α≈0,2×10-4 1/°C, возможно увеличение толщины одноразового нанесенного слоя изоляции приблизительно в 15 раз при отсутствии вышеупомянутых дефектов.

Более того, предлагаемое покрытие кроме высокой механической прочности (прочность при сжатии 4-6 МПа, адгезионная прочность при отрыве изоляции от стальной поверхности 3-5 МПа, ударопрочность 7-8 КДж/м2), низкой водостойкости 0,2% (объемная), имеет высокую устойчивость к радиации и к образованию грибков, плесени и гнили из-за содержания в составе природного антисептика - жидкого стекла, что положительно влияет на его эксплуатационные характеристики.

Наилучшими эксплуатационными характеристиками предлагаемое покрытие обладает при его формировании следующим образом. Покрытие с армирующей сеткой наносят на стальную трубу и сушат его по схеме: 2 часа при температуре 17-27°C, затем 4-6 часов при температуре 60-65°C и 2-4 часа при температуре 80-85°C. Или при температуре теплопровода 70-90°C наносят покрытие толщиной 4-5 мм и армирующую сетку. Через 10-15 мин операцию нанесения покрытия повторяют до набора необходимого слоя изоляции. После такой сушки предлагаемое покрытие имеет плотность 480-520 кг/м3 и теплопроводность при 100°C 0,038-0,041 Вт/м°C.

Перечисленные свойства предлагаемого покрытия изоляции с применением армирующей стеклосетки, а также технологические особенности его формирования позволяют эксплуатировать его без дополнительной гидрозащитной оболочки.

Похожие патенты RU2422716C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕПЛОГИДРОИЗОЛИРОВАННОГО ТРУБНОГО ИЗДЕЛИЯ ДЛЯ ПРОКЛАДКИ НАДЗЕМНЫХ ТЕПЛОТРАСС 2005
  • Игнатов Анатолий Афанасьевич
  • Ширинян Врам Торгомович
RU2278316C1
Теплоизоляционная система 2023
  • Семенюк Андрей Николаевич
RU2818405C1
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО И ОГНЕСТОЙКОГО МНОГОСЛОЙНОГО КОМБИНИРОВАННОГО ПОЛИМЕРНОГО ПОКРЫТИЯ 2007
  • Беляев Виталий Степанович
  • Федотов Игорь Михайлович
RU2352601C2
СУХАЯ СМЕСЬ ДЛЯ ОГНЕЗАЩИТНОГО ПОКРЫТИЯ 2017
  • Васкалов Владимир Федорович
  • Ведяков Иван Иванович
  • Остапчук Сергей Михайлович
  • Пивоваров Василий Васильевич
  • Прелов Сергей Александрович
  • Пронин Денис Геннадиевич
RU2660154C1
КРАСЯЩЕЕ МНОГОФУНКЦИОНАЛЬНОЕ ЗАЩИТНОЕ ПОКРЫТИЕ 2012
  • Камашева Елена Анатольевна
RU2514940C1
Способ изготовления труб с комбинированной тепловой изоляцией для надземных теплотрасс 2015
  • Нугайбеков Ренат Ардинатович
  • Валиков Эдуард Владимирович
  • Багманов Рустам Раисович
  • Саттаров Наиль Махасимович
  • Будник Ольга Юрьевна
  • Нарышкин Евгений Борисович
RU2611925C1
СПОСОБ ТЕПЛОВОЙ ИЗОЛЯЦИИ ЗАПОРНОЙ АРМАТУРЫ ТРУБОПРОВОДОВ НАДЗЕМНОЙ ПРОКЛАДКИ И ТЕПЛОИЗОЛЯЦИОННОЕ УСТРОЙСТВО ДЛЯ РЕАЛИЗАЦИИ СПОСОБА 2014
  • Ревель-Муроз Павел Александрович
  • Ревин Павел Олегович
  • Суриков Виталий Иванович
  • Павлов Вячеслав Владимирович
  • Шотер Павел Иванович
  • Сощенко Анатолий Евгеньевич
RU2575534C2
СПОСОБ ПЕРЕРАСПРЕДЕЛЕНИЯ СОСТАВЛЯЮЩИХ ТЕПЛОВОГО ПОТОКА 2009
  • Астахов Дмитрий Николаевич
  • Павлова Наталья Тихоновна
RU2418204C1
МНОГОСЛОЙНОЕ ИЗОЛЯЦИОННОЕ ЛЕНТОЧНОЕ ПОКРЫТИЕ ДЛЯ ТРУБОПРОВОДОВ 2022
  • Макаров Сергей Николаевич
  • Кирсанов Валерий Юрьевич
  • Гареев Динис Эмилович
RU2789043C1
Способ изготовления труб с комбинированной тепловой изоляцией для теплотрасс 2017
  • Яруллин Анвар Габдулмазитович
  • Валиков Эдуард Владимирович
  • Багманов Рустам Раисович
  • Будник Ольга Юрьевна
  • Нарышкин Евгений Борисович
RU2661563C2

Иллюстрации к изобретению RU 2 422 716 C1

Реферат патента 2011 года ВЫСОКОТЕМПЕРАТУРНОЕ ТЕПЛОИЗОЛЯЦИОННОЕ ПОКРЫТИЕ ДЛЯ СТАЛЬНЫХ ТРУБНЫХ ЭЛЕМЕНТОВ

Изобретение относится к теплоэнергетике, в частности к теплоизоляции стальных трубных элементов теплотрассы, эксплуатируемых без гидрозащитной оболочки, а также энергоэффективной и энергосберегающей технологии в области теплоснабжения. Теплоизоляционное покрытие для стальных трубных элементов включает жидкокерамическую основу с стеклянными микросферами диметром 15-150 мкм и наполнителями. Жидкокерамическая основа состоит из негорючих неорганических компонентов, включающих (в массовых процентах): 0,4-0,6 аэросила, 6-8 вспученного перлита, 5-7 β-эвкриптита с отрицательным коэффициентом термического расширения, 0,8-1,2 молотой слюды, 2-4 оксидов кремния и/или титана, 18-20 стеклянных микросфер и 62,5-64,5 связующего в виде жидкого натриевого или калиевого стекла. Покрытие выполнено толщиной 4-12 мм. Каждые на 4-5 мм покрытия содержат, по меньшей мере, 3 слоя армирующей сетки. Изобретение позволяет увеличить срок службы покрытия и снизить вредное воздействие на организм человека и окружающую среду. 1 ил.

Формула изобретения RU 2 422 716 C1

Теплоизоляционное покрытие для стальных трубных элементов, включающее жидкокерамическую основу с микросферами диметром 15-150 мкм, отличающееся тем, что жидкокерамическая основа состоит из негорючих неорганических компонентов, включающих (в массовых процентах): 0,4-0,6 аэросила, 6-8 вспученного перлита, 5-7 β-эвкриптита с отрицательным коэффициентом термического расширения, 0,8-1,2 молотой слюды, 2-4 оксидов кремния и/или титана, 18-20 стеклянных микросфер и 62,5-64,5 связующего в виде жидкого натриевого или калиевого стекла, причем покрытие выполнено толщиной 4-12 мм, и каждые на 4-5 мм покрытия содержат, по меньшей мере, 3 слоя армирующей сетки.

Документы, цитированные в отчете о поиске Патент 2011 года RU2422716C1

СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО И ОГНЕСТОЙКОГО МНОГОСЛОЙНОГО КОМБИНИРОВАННОГО ПОЛИМЕРНОГО ПОКРЫТИЯ 2007
  • Беляев Виталий Степанович
  • Федотов Игорь Михайлович
RU2352601C2
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ АНТИКОРРОЗИОННОГО, ОГНЕСТОЙКОГО И ТЕПЛОИЗОЛЯЦИОННОГО ПОКРЫТИЯ И ЕЕ ПРИМЕНЕНИЕ 2005
  • Беляев Виталий Степанович
RU2288927C1
ВОДНАЯ КОМПОЗИЦИЯ, НАПОЛНЕННАЯ ПОЛЫМИ МИКРОСФЕРАМИ, ДЛЯ ПОЛУЧЕНИЯ АНТИКОРРОЗИОННОГО И ТЕПЛОИЗОЛЯЦИОННОГО ПОКРЫТИЯ И СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЯ НА ЕЕ ОСНОВЕ 2005
  • Беляев Виталий Степанович
RU2304156C1
Способ изготовления термометра 1982
  • Кац Самуил Михайлович
  • Богин Владимир Николаевич
  • Чубенко Николай Гаврилович
SU1103090A1
EP 1884536 A1, 06.02.2008
CN 101250343 A, 27.08.2008.

RU 2 422 716 C1

Авторы

Игнатов Анатолий Афанасьевич

Ширинян Врам Торгомович

Даты

2011-06-27Публикация

2010-02-12Подача