Изобретение относится к сельскому хозяйству и почвоведению, а именно к методам определения водоустойчивости почвенных агрегатов.
Известен способ определения водоустойчивости почвенных агрегатов в стоячей воде [1]. Он заключается в отборе агрегатов, помещении их в воду и наблюдении за процессом их распада, причем почвенные агрегаты перед помещением в воду помещают в ячейки, близкие по размерам величине агрегатов, в дне которых сделаны отверстия по размеру ячейки, а снизу ячейки располагают проволоку, делящую ячейку на две части, поддерживающую нераспавшиеся агрегаты и позволяющую разрушившимся в воде агрегатам выпасть из ячейки, при этом разрушение агрегатов в воде устанавливают по визуализации проволок в ячейках.
Основным недостатком данного способа является определение водоустойчивости воздушно-сухих агрегатов, в то время как в реальных условиях большинство почв практически никогда не высыхает до воздушно-сухого состояния. Как следствие, предлагаемым способом изучают водоустойчивость не тех объектов, которые существуют в реальности, и он не может позволить получать корректные результаты.
Целью изобретения является повышение точности при определении водоустойчивости почвенных агрегатов.
Техническая сущность изобретения заключается в восстановлении при взаимодействии с водой в течение нескольких суток единой гумусовой матрицы почвенного агрегата, обеспечивающей его водоустойчивость, которая разрушается при высушивании почв.
Поставленная задача решается путем отбора агрегатов, помещения их в воду и наблюдения за процессом распада, причем почвенные агрегаты перед помещением в кассету с ячейками капиллярно увлажняют и выдерживают во влажном состоянии несколько суток, затем помещают агрегаты в ячейки кассеты, близкие по размерам величине агрегатов, в дне которых сделаны отверстия по размеру ячейки, а снизу ячейки располагают проволоку, делящую ячейку на две части, поддерживающую нераспавшиеся агрегаты и позволяющую разрушившимся в воде агрегатам выпасть из ячейки, а кассету с ячейками, в которые помещены агрегаты, размещают в воде, при этом разрушение агрегатов в воде устанавливают по визуализации проволок в ячейках.
Предлагаемый способ позволяет значительно повысить точность при определении водоустойчивости почвенных агрегатов.
Нижеследующие примеры раскрывают суть предлагаемого изобретения.
Пример 1.
Воздушно-сухую дерново-подзолистую почву просеяли на ситах. Отобрали 64 агрегата размером 4-4,5 мм. Поместили почвенные агрегаты в кассету высотой 6 мм, в ячейки диаметром 6 мм, к нижней части которых была прикреплена проволока диаметром 1 мм, делящая ячейку пополам и поддерживающая почвенные агрегаты. Кассету (квадрат 8×8 с 64 ячейками) поместили в кристаллизатор. Кристаллизатор заполнили водой. Определение водоустойчивости провели согласно методу Андрианова, рассчитывая водоустойчивость по Качинскому [2]. Однако интервал времени, за который фиксировали распад агрегатов, составлял не 1 минуту, а 10 минут. Весь процесс определения занимал не 10, а 100 минут.
Водоустойчивость по Качинскому <1%.
Пример 2.
Воздушно-сухую дерново-подзолистую почву просеяли на ситах. Отобрали 64 агрегата размером 4-4,5 мм. Внесли в агрегаты при помощи микродозатора по 10 мкл воды и поставили в эксикатор на 1 сутки. Поместили почвенные агрегаты в кассету высотой 6 мм, в ячейки диаметром 6 мм, к нижней части которых была прикреплена проволока диаметром 1 мм, делящая ячейку пополам и поддерживающая почвенные агрегаты. Кассету (квадрат 8×8 с 64 ячейками) поместили в кристаллизатор. Кристаллизатор заполнили водой. Определение водоустойчивости провели согласно методу Андрианова, рассчитывая водоустойчивость по Качинскому [2]. Однако интервал времени, за который фиксировали распад агрегатов, составлял не 1 минуту, а 10 минут. Причем весь процесс определения занимал не 10, а 100 минут. Водоустойчивость по Качинскому - 20-25%.
Пример 3. Воздушно-сухую дерново-подзолистую почву просеяли на ситах. Отобрали 64 агрегата размером 4-4,5 мм. Внесли в агрегаты при помощи микродозатора по 10 мкл воды и поставили в эксикатор на 2 суток. Поместили почвенные агрегаты в кассету высотой 6 мм, в ячейки диаметром 6 мм, к нижней части которых была прикреплена проволока диаметром 1 мм, делящая ячейку пополам и поддерживающая почвенные агрегаты. Кассету (квадрат 8×8 с 64 ячейками) поместили в кристаллизатор. Кристаллизатор заполнили водой. Определение водоустойчивости провели согласно методу Андрианова, рассчитывая водоустойчивость по Качинскому [2]. Однако интервал времени, за который фиксировали распад агрегатов, составлял не 1 минуту, а 10 минут. Причем весь процесс определения занимал не 10, а 100 минут. Водоустойчивость по Качинскому - 30-35%.
Пример 4.
Воздушно-сухую дерново-подзолистую почву просеяли на ситах. Отобрали 64 агрегата размером 4-4,5 мм. Внесли в агрегаты при помощи микродозатора по 10 мкл воды и поставили в эксикатор на 3 суток. Поместили почвенные агрегаты в кассету высотой 6 мм, в ячейки диаметром 6 мм, к нижней части которых была прикреплена проволока диаметром 1 мм, делящая ячейку пополам и поддерживающая почвенные агрегаты. Кассету (квадрат 8×8 с 64 ячейками) поместили в кристаллизатор. Кристаллизатор заполнили водой. Определение водоустойчивости провели согласно методу Андрианова, рассчитывая водоустойчивость по Качинскому [2]. Однако интервал времени, за который фиксировали распад агрегатов, составлял не 1 минуту, а 10 минут. Весь процесс определения занимал не 10, а 100 минут. Водоустойчивость по Качинскому - 30-35%.
Пример 5.
Воздушно-сухую серую лесную почву просеяли на ситах. Отобрали 64 агрегата размером 4-4,5 мм. Поместили почвенные агрегаты в кассету высотой 6 мм, в ячейки диаметром 6 мм, к нижней части которых была прикреплена проволока диаметром 1 мм, делящая ячейку пополам и поддерживающая почвенные агрегаты. Кассету (квадрат 8×8 с 64 ячейками) поместили в кристаллизатор. Кристаллизатор заполнили водой. Определение водоустойчивости провели согласно методу Андрианова, рассчитывая водоустойчивость по Качинскому [2]. Однако интервал времени, за который фиксировали распад агрегатов, составлял не 1 минуту, а 10 минут. Весь процесс определения занимал не 10, а 100 минут.
Водоустойчивость по Качинскому - 25-30%.
Пример 6.
Воздушно-сухую серую лесную почву просеяли на ситах. Отобрали 64 агрегата размером 4-4,5 мм. Внесли в агрегаты при помощи микродозатора по 10 мкл воды и поставили в эксикатор на 1 сутки. Поместили почвенные агрегаты в кассету высотой 6 мм, в ячейки диаметром 6 мм, к нижней части которых была прикреплена проволока диаметром 1 мм, делящая ячейку пополам и поддерживающая почвенные агрегаты. Кассету (квадрат 8×8 с 64 ячейками) поместили в кристаллизатор. Кристаллизатор заполнили водой. Определение водоустойчивости провели согласно методу Андрианова, рассчитывая водоустойчивость по Качинскому [2]. Однако интервал времени, за который фиксировали распад агрегатов, составлял не 1 минуту, а 10 минут. Причем весь процесс определения занимал не 10, а 100 минут. Водоустойчивость по Качинскому - 30-35%.
Пример 7.
Воздушно-сухую серую лесную почву просеяли на ситах. Отобрали 64 агрегата размером 4-4,5 мм. Внесли в агрегаты при помощи микродозатора по 10 мкл воды и поставили в эксикатор на 2 суток. Поместили почвенные агрегаты в кассету высотой 6 мм, в ячейки диаметром 6 мм, к нижней части которых была прикреплена проволока диаметром 1 мм, делящая ячейку пополам и поддерживающая почвенные агрегаты. Кассету (квадрат 8×8 с 64 ячейками) поместили в кристаллизатор. Кристаллизатор заполнили водой. Определение водоустойчивости провели согласно методу Андрианова, рассчитывая водоустойчивость по Качинскому [2]. Однако интервал времени, за который фиксировали распад агрегатов, составлял не 1 минуту, а 10 минут. Причем весь процесс определения занимал не 10, а 100 минут.
Водоустойчивость по Качинскому - 50-55%.
Пример 8.
Воздушно-сухую серую лесную почву просеяли на ситах. Отобрали 64 агрегата размером 4-4,5 мм. Внесли в агрегаты при помощи микродозатора по 10 мкл воды и поставили в эксикатор на 3 суток. Поместили почвенные агрегаты в кассету высотой 6 мм, в ячейки диаметром 6 мм, к нижней части которых была прикреплена проволока диаметром 1 мм, делящая ячейку пополам и поддерживающая почвенные агрегаты. Кассету (квадрат 8×8 с 64 ячейками) поместили в кристаллизатор. Кристаллизатор заполнили водой. Определение водоустойчивости провели согласно методу Андрианова, рассчитывая водоустойчивость по Качинскому [2]. Однако интервал времени, за который фиксировали распад агрегатов, составлял не 1 минуту, а 10 минут. Причем весь процесс определения занимал не 10, а 100 минут. Водоустойчивость по Качинскому - 50-55%.
Пример 9.
Воздушно-сухой чернозем просеяли на ситах. Отобрали 64 агрегата размером 4-4,5 мм. Поместили почвенные агрегаты в кассету высотой 6 мм, в ячейки диаметром 6 мм, к нижней части которых была прикреплена проволока диаметром 1 мм, делящая ячейку пополам и поддерживающая почвенные агрегаты. Кассету (квадрат 8×8 с 64 ячейками) поместили в кристаллизатор. Кристаллизатор заполнили водой. Определение водоустойчивости провели согласно методу Андрианова, рассчитывая водоустойчивость по Качинскому [2]. Однако интервал времени, за который фиксировали распад агрегатов, составлял не 1 минуту, а 10 минут. Весь процесс определения занимал не 10, а 100 минут.
Водоустойчивость по Качинскому - 15-17%.
Пример 10.
Воздушно-сухой чернозем просеяли на ситах. Отобрали 64 агрегата размером 4-4,5 мм. Внесли в агрегаты при помощи микродозатора по 10 мкл воды и поставили в эксикатор на 1 сутки. Поместили почвенные агрегаты в кассету высотой 6 мм, в ячейки диаметром 6 мм, к нижней части которых была прикреплена проволока диаметром 1 мм, делящая ячейку пополам и поддерживающая почвенные агрегаты. Кассету (квадрат 8×8 с 64 ячейками) поместили в кристаллизатор. Кристаллизатор заполнили водой. Определение водоустойчивости провели согласно методу Андрианова, рассчитывая водоустойчивость по Качинскому [2]. Однако интервал времени, за который фиксировали распад агрегатов, составлял не 1 минуту, а 10 минут. Причем весь процесс определения занимал не 10, а 100 минут.
Водоустойчивость по Качинскому - 25-28%.
Пример 11.
Воздушно-сухой чернозем просеяли на ситах. Отобрали 64 агрегата размером 4-4,5 мм. Внесли в агрегаты при помощи микродозатора по 10 мкл воды и поставили в эксикатор на 2 суток. Поместили почвенные агрегаты в кассету высотой 6 мм, в ячейки диаметром 6 мм, к нижней части которых была прикреплена проволока диаметром 1 мм, делящая ячейку пополам и поддерживающая почвенные агрегаты. Кассету (квадрат 8×8 с 64 ячейками) поместили в кристаллизатор. Кристаллизатор заполнили водой. Определение водоустойчивости провели согласно методу Андрианова, рассчитывая водоустойчивость по Качинскому [2]. Однако интервал времени, за который фиксировали распад агрегатов, составлял не 1 минуту, а 10 минут. Причем весь процесс определения занимал не 10, а 100 минут.
Водоустойчивость по Качинскому - 30-35%.
Пример 12.
Воздушно-сухой чернозем просеяли на ситах. Отобрали 64 агрегата размером 4-4,5 мм. Внесли в агрегаты при помощи микродозатора по 10 мкл воды и поставили в эксикатор на 3 суток. Поместили почвенные агрегаты в кассету высотой 6 мм, в ячейки диаметром 6 мм, к нижней части которых была прикреплена проволока диаметром 1 мм, делящая ячейку пополам и поддерживающая почвенные агрегаты. Кассету (квадрат 8×8 с 64 ячейками) поместили в кристаллизатор. Кристаллизатор заполнили водой. Определение водоустойчивости провели согласно методу Андрианова, рассчитывая водоустойчивость по Качинскому [2]. Однако интервал времени, за который фиксировали распад агрегатов, составлял не 1 минуту, а 10 минут. Причем весь процесс определения занимал не 10, а 100 минут.
Водоустойчивость по Качинскому - 30-35%.
Полученные данные свидетельствуют, что водоустойчивость воздушно-сухих почвенных агрегатов отличается от водоустойчивости увлажненных в течение нескольких суток почвенных агрегатов многократно.
Таким образом, предполагаемое изобретение позволяет значительно повысить точность при определении водоустойчивости почвенных агрегатов, соответствующей водоустойчивости в реальных условиях.
Литература.
1. Патент РФ №2344420, 2009.
2. Качинский Н.А. Физика почвы. Ч 1. - М.: Высшая школа, 1965, - 324 с.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ВОДОПРОЧНОСТИ ПОЧВЕННЫХ АГРЕГАТОВ | 2010 |
|
RU2424517C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВОДОУСТОЙЧИВОСТИ ПОЧВЕННЫХ АГРЕГАТОВ | 2010 |
|
RU2437094C1 |
СПОСОБ ПОВЫШЕНИЯ ВОДОПРОЧНОСТИ ПОЧВЕННЫХ АГРЕГАТОВ | 2010 |
|
RU2438125C1 |
СПОСОБ ПОВЫШЕНИЯ ВОДОПРОЧНОСТИ СТРУКТУРЫ ПОЧВ | 2010 |
|
RU2431141C1 |
СПОСОБ ПОВЫШЕНИЯ ВОДОПРОЧНОСТИ СТРУКТУРЫ ПОЧВ | 2010 |
|
RU2431142C1 |
СПОСОБ ПОВЫШЕНИЯ ВОДОПРОЧНОСТИ СТРУКТУРЫ ПОЧВ | 2010 |
|
RU2436830C1 |
СПОСОБ ПОВЫШЕНИЯ ВОДОПРОЧНОСТИ СТРУКТУРЫ ПОЧВ | 2010 |
|
RU2436831C1 |
СПОСОБ ПОВЫШЕНИЯ ВОДОПРОЧНОСТИ СТРУКТУРЫ ПОЧВ | 2010 |
|
RU2430953C1 |
СПОСОБ ПОВЫШЕНИЯ ВОДОПРОЧНОСТИ СТРУКТУРЫ ПОЧВ | 2010 |
|
RU2435824C1 |
СПОСОБ ПОВЫШЕНИЯ ВОДОПРОЧНОСТИ СТРУКТУРЫ ПОЧВ | 2010 |
|
RU2435825C1 |
Изобретение относится к области сельского хозяйства и почвоведения. Способ заключается в отборе агрегатов, помещении их в воду и наблюдении за процессом их распада. Причем почвенные агрегаты перед помещением в воду помещают в ячейки, близкие по размерам величине агрегатов, в дне которых сделаны отверстия по размеру ячейки. Снизу ячейки располагают проволоку, делящую ячейку на две части, поддерживающую нераспавшиеся агрегаты и позволяющую разрушившимся в воде агрегатам выпасть из ячейки. При этом разрушение агрегатов в воде устанавливают по визуализации проволок в ячейках. Воздушно-сухие почвенные агрегаты перед помещением в кассету с ячейками капиллярно увлажняют и выдерживают во влажном состоянии несколько суток. Способ позволяет повысить точность определения водоустойчивости почвенных агрегатов.
Способ определения водоустойчивости почвенных агрегатов, заключающийся в отборе агрегатов, помещении их в воду и наблюдении за процессом их распада, причем почвенные агрегаты перед помещением в воду помещают в ячейки, близкие по размерам величине агрегатов, в дне которых сделаны отверстия по размеру ячейки, а снизу ячейки располагают проволоку, делящую ячейку на две части, поддерживающую нераспавшиеся агрегаты и позволяющую разрушившимся в воде агрегатам выпасть из ячейки, при этом разрушение агрегатов в воде устанавливают по визуализации проволок в ячейках, отличающийся тем, что воздушно-сухие почвенные агрегаты перед помещением в кассету с ячейками капиллярно увлажняют и выдерживают во влажном состоянии несколько суток.
СПОСОБ ОПРЕДЕЛЕНИЯ ВОДОПРОЧНОСТИ ПОЧВЕННЫХ АГРЕГАТОВ | 2007 |
|
RU2344420C1 |
Способ определения водопрочности почвенных агрегатов | 1990 |
|
SU1749830A1 |
ВАДЮНИНА А.Ф | |||
и др | |||
Методы исследования физических свойств почв, 3-е изд., перераб | |||
и доп | |||
- М.: Агропромиздат, 1986, с.70-72 | |||
РАСТВОРОВА О.Г | |||
Физика почв (Практическое руководство) | |||
- Л.: Изд-во Ленинградского ун-та, 1983, с.36-37 | |||
Pikul J.L.jr; Osborne S.; Ellsbury M.; Riedell W | |||
Particulate |
Авторы
Даты
2011-06-27—Публикация
2010-03-30—Подача