СПОСОБ СОВМЕЩЕНИЯ ТРЕХЭЛЕКТРОДНОГО, ВЕРТИКАЛЬНОГО И ОДНОПОЛЯРНОГО ЭЛЕКТРИЧЕСКИХ ЗОНДИРОВАНИЙ Российский патент 2011 года по МПК G01V3/02 

Описание патента на изобретение RU2427007C2

Предлагаемое изобретение относится к электрической разведке по методу электросопротивления и позволяет повысить эффективность изучения верхней части геологического разреза и выявления локальных неоднородностей как в близповерхностных образованиях, так и в коренных породах.

Область преимущественного применения предлагаемого способа: картирование геологической среды при инженерно-геологических изысканиях; обнаружение зон тектонически раздробленных, водопроницаемых горных пород; выявление проводящих (рудоносных) объектов, перекрытых рыхлыми отложениями; изучение состояния грунтовых инженерных сооружений и др.

Известен способ вертикального электрического зондирования (ВЭЗ), в котором используются четыре заземления, расположенные на одной линии (профиле наблюдений). Два из них - приемные (М, N), каждое из которых отстоит на одинаковом расстоянии по разные стороны от центра установки (пункта наблюдений), и подключены к измерительному прибору. Два других заземления - питающие (А, В) - размещены на одинаковом (заданном) расстоянии по профилю наблюдений центра установки и подключены к клеммам источника электрического тока. При одном размещении питающих заземлений измеряется падение напряжения ΔUMN между приемными заземлениями (Фиг.1,а). Затем питающие заземления перемещаются на следующее заданное расстояние от центра установки, процесс измерений повторяется и т.д. По результатам электрического зондирования вычисляют значения кажущегося электрического сопротивления среды для каждого положения питающих заземлений (А, В) и по изменению электросопротивления в зависимости от расстояния между питающими заземлениями судят о геоэлектрическом строении среды [1].

Известный способ имеет недостатки: он предназначен для изучения горизонтально-слоистых сред, поэтому при неоднородном строении исследуемого геологического разреза, а особенно в близповерхностной его части, истолкование полученных экспериментальных данных является неоднозначным; присутствие непроводящего слоя в геологическом разрезе затрудняет изучение нижних горизонтов.

Известен способ электрического зондирования с однополярной установкой (метод наложения полей), в котором два питающих (А, А/) и два приемных (М, N) заземления размещаются на одной линии (профиле наблюдений) так, что заземления (А) и (М) располагаются с одной стороны, а (А/) и (N) - с другой, на заданном расстоянии от центра установки (пункте наблюдений), а еще одно питающее заземление (В) отнесено в практическую бесконечность и подключается к одной из клемм источника электрического тока. Два других питающих заземления (А, А/) подключаются к другой клемме источника электрического тока и с помощью специального устройства осуществляется приведение к единому значению электрических токов, стекающих с питающих заземлений (А) и (А/). Приемные заземления (М, N) подключаются к измерительному прибору. При первом положении питающих заземлений (А, А/) измеряется падение электрического напряжения ΔUMN между приемными заземлениями (Фиг.1,б). Затем заземления (А) и (А/) перемещаются на одинаковое (заданное) расстояние от центра установки, измерения повторяются и т.д. [2].

В однородной и горизонтально-слоистой среде значения падения электрического напряжения ΔUMN равны нулю. При наличии в геологической среде неоднородности, отличающейся по электрофизическим свойствам от вмещающих пород, на графиках ΔUMN по профилю наблюдений фиксируются знакопеременные экстремумы падения электрического напряжения с переходом через ноль [3].

Известный способ имеет следующие недостатки: во-первых, требуется очень четкое поддержание одинакового значения электрического тока, стекающего с питающих заземлений (А) и (А/) в процессе производства измерений; во-вторых, измерительная аппаратура должна обеспечивать возможность определения знака ΔUMN; в-третьих, аномальный эффект проявляется как над проводящей, так и над непроводящей неоднородностью, в связи с чем затруднительно определить природу выявленного геоэлектрического объекта.

Целью предлагаемого способа является повышение эффективности выявления геоэлектрических неоднородностей в геологической среде и снижение неоднозначности интерпретации экспериментальных данных за счет совмещения трехэлектродного, вертикального и однополярного электрических зондирований; повышение производительности труда, так как не потребуется для способа однополярного зондирования при каждом измерении поддерживать одинаковым ток, стекающий с питающих заземлений; возможность применения любой электроразведочной аппаратуры, предназначенной для методов сопротивлений.

Поставленная цель достигается тем, что используется метод двух трехэлектродных зондирований, в котором на профиле наблюдений размещают четыре заземления на одной линии симметрично относительно точки наблюдений, совпадающей с центром установки, а пятое заземление относят в практическую «бесконечность» и подключают к одной из клемм источника электрического тока, центральные заземления подключают к измерителю электрического напряжения, при выполнении измерений к другой клемме источника электрического тока поочередно подключают крайние питающие заземления и измеряют между приемными заземлениями падение напряжения ΔUAMN и ΔUA'MN, после выполнения измерений при одном положении крайних питающих заземлений их перемещают на одинаковое заданное расстояние от центра установки и процесс измерений повторяют, выполняют указанные операции при всех заданных положениях питающих заземлений, затем по измеренным падениям напряжений для двух трехэлектродных зондирований вычисляют в каждой точке наблюдений при заданных разносах падение электрического напряжения для вертикальных электрических зондирований ΔUBЭЗ, и падение электрического напряжения для однополярных зондирований ΔUМНП, по измеренным и вычисленным падениям напряжения определяется распределение кажущегося электрического сопротивления в разрезах для двух трехэлектродных и вертикальных зондирований, а также распределение в разрезе падения напряжения для однополярных зондирований и по результатам зондирований судят о наличии и расположении в разрезе геоэлектрических неоднородностей.

На фиг.1,в показана схема установки для трехэлектродного зондирования. Сигнал ΔUAMN измеряют при использовании в качестве питающих заземлений (А) и (В). Сигнал ΔUA'MN измеряют при использовании в качестве питающих заземлений (А/) и (В).

Предлагаемый способ осуществляется с электроразведочной аппаратурой, предназначенной для электромагнитных исследований (например, ЭРА, ЭРА-ЗНАК, ЭРА-МАХ, либо зарубежными аналогами, работающими на постоянном или переменном низкочастотном токе), следующим образом. На профиле наблюдений размещают четыре заземления (A,M,N,А/) на одной линии симметрично относительно точки наблюдений (О), совпадающей с центром установки (фиг.1,в), а пятое заземление (В) относят в «бесконечность» и подключают к одной из клемм источника электрического тока. Заземления (М) и (N) подключают к измерителю электрического напряжения. При выполнении измерений к другой клемме источника электрического тока поочередно подключают питающие заземления (А) и (А7/), измеряют между приемными заземлениями (MN) падение напряжения ΔUAMN и AUA'MN соответственно. После выполнения измерений при одном положении питающих заземлений (А) и (А/) их перемещают на одинаковое заданное расстояние от центра установки (О) и процесс измерений повторяют. Указанные операции повторяют при всех заданных положениях питающих заземлений. Таким образом, на одной точке наблюдений получают две кривые зондирования, соответствующие двум трехэлектродным установкам AMN(В→∞) и A/MN(В→∞) [4].

По измеренным падениям напряжений для двух трехэлектродных зондирований вычисляют на каждой точке при каждом разносе:

где ΔUBЭЗ - падение электрического напряжения для вертикальных электрических зондирований, ΔUМНП - падение электрического напряжения для однополярной установки (метод наложения полей).

Для обоснования выражений (1), (2) приведем измеренные падения напряжения в виде:

В методе вертикальных электрических зондирований падение напряжения на заземлениях (М) и (N) при подключении заземления (А) к положительной, а (А/) - к отрицательной клеммам источника электрического тока вычисляется по формуле:

которая с учетом формул (3)-(4) приводится к виду:

В тех случаях, когда осуществляются модульные измерения падения напряжения на приемных заземлениях (М) и (N), формулу (6) следует преобразовать с учетом знаков слагаемых, входящих в выражение. Поскольку величина потенциала обратно пропорциональна расстоянию до точки наблюдений, т.е. до заземления (М) и (N), то всегда ΔUAMN>0, т.к. UAM>UAN, соответственно ΔUA'MN<0 и формула (6) с использованием модульных измерений преобразуется к виду:

В методе наложения полей (МНП) применяется однополярная установка так, что два питающих заземления (А) и (А/) подключены к одной клемме источника тока, например к положительной, а третье (отрицательное) отнесено в «бесконечность». При этом падение напряжения на заземлениях (М) и (N) вычисляется по формуле:

которая с учетом (3)-(4) приводится к виду:

При осуществлении модульных измерений падения напряжений на приемных заземлениях (М) и (N) формула (9) преобразуется аналогичным образом, как и формула (6), с учетом знаков слагаемых, входящих в выражение:

.

Очевидно, что для однородного проводящего полупространства ΔUМНП=0. При наличии в нем геоэлектрических неоднородностей ΔUМНП может быть как положительной, так и отрицательной величиной, отражая особенности распределения электрофизических параметров среды.

По обследованному профилю наблюдений по значениям (ΔUAMN), (ΔUA'MN) и (ΔUВЭЗ) вычисляют значения кажущегося электросопротивления (ρк) и строят разрезы ρк для трехэлектродных и четырехэлектродной симметричной (ВЭЗ) установок, а также разрез (ΔUМНП). По разрезу падения электрического напряжения, полученного по результатам измерений с однополярной установкой (ΔUМНП), выделяют геоэлектрические неоднородности, а по разрезам кажущегося электросопротивления определяют электропроводность неоднородности (повышенная или пониженная по сравнению с вмещающей средой), уточняют морфологию объекта и с учетом этого проводят количественную интерпретацию результатов вертикального электрического зондирования.

На фигуре 2 приводится таблица значений разности потенциалов, полученных на одной из профильных точек совмещенных зондирований при проведении экспериментальных работ. Зондирования выполнялись с полуразносами (r=АА//2) от 1,5 до 15 метров по предложенному в заявке способу. Кроме того, для контроля при этих же разносах были дополнительно выполнены вертикальные электрические зондирования по стандартной методике [1], при которых разности потенциалов (ΔUMN) практически совпадают с разностями потенциалов, полученных при совмещенных зондированиях ΔUВЭЗ (фиг.2, столбец 4 и 6).

Преимущество предлагаемого способа состоит в повышении эффективности выявления геоэлектрических неоднородностей, как в верхней части геологического разреза, так и в коренных геологических образованиях за счет комплексирования четырех методов электрического зондирования, повышающих геоэлектрическую информативность исследований при высокой производительности работ.

Похожие патенты RU2427007C2

название год авторы номер документа
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 2006
  • Улитин Руслан Васильевич
  • Федорова Ольга Ивановна
RU2332690C1
ГЕОЭЛЕКТРИЧЕСКИЙ СПОСОБ ПРОГНОЗИРОВАНИЯ ОПОЛЗНЕЙ НА ИСКУССТВЕННЫХ ГРУНТОВЫХ СООРУЖЕНИЯХ 2008
  • Федорова Ольга Ивановна
  • Улитин Руслан Васильевич
  • Бакаев Владимир Павлович
RU2383904C2
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 2014
  • Шестаков Алексей Федорович
  • Федорова Ольга Ивановна
RU2581768C1
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 1994
  • Кормильцев В.В.
  • Улитин Р.В.
  • Человечков А.И.
RU2098847C1
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 2007
  • Улитин Руслан Васильевич
  • Федорова Ольга Ивановна
  • Бакаев Владимир Павлович
RU2340918C2
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 2013
  • Колесников Владимир Петрович
RU2545309C2
Способ подземной электроразведки 2023
  • Сальников Алексей Павлович
RU2810190C1
Способ дистанционного электрозондирования 1989
  • Нахабцев Александр Сергеевич
  • Нахабцев Александр Александрович
SU1746347A1
Способ геоэлектрозондирования 1984
  • Богданов Леонид Афанасьевич
  • Нахабцев Александр Сергеевич
  • Сапожников Борис Григорьевич
  • Яблучанский Анатолий Игнатьевич
SU1239671A1
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 2002
  • Марченко М.Н.
RU2210092C1

Иллюстрации к изобретению RU 2 427 007 C2

Реферат патента 2011 года СПОСОБ СОВМЕЩЕНИЯ ТРЕХЭЛЕКТРОДНОГО, ВЕРТИКАЛЬНОГО И ОДНОПОЛЯРНОГО ЭЛЕКТРИЧЕСКИХ ЗОНДИРОВАНИЙ

Изобретение относится к электроразведке методом электросопротивления. Технический результат: повышение эффективности выявления геоэлектрических неоднородностей в геологической среде. Сущность: на профиле наблюдений выполняют два трехэлектродных зондирования с помощью установки, содержащей четыре заземления, размещенные на одной линии симметрично относительно точки наблюдений. Пятое заземление относят в практическую «бесконечность» и подключают к одной из клемм источника электрического тока. Центральные заземления подключают к измерителю электрического напряжения. При выполнении измерений к другой клемме источника электрического тока поочередно подключают крайние питающие заземления. Измеряют между приемными заземлениями падение напряжения ΔUAMN и ΔUA'MN. Повторяют операции при всех заданных положениях питающих заземлений. По измеренным падениям напряжений вычисляют в каждой точке наблюдений при заданных разносах падение электрического напряжения для вертикальных электрических зондирований и падение электрического напряжения для однополярных зондирований. По измеренным и вычисленным падениям напряжения определяется распределение кажущегося электрического сопротивления в разрезах для двух трехэлектродных и вертикальных зондирований и распределение в разрезе падения напряжения для однополярных зондирований. По результатам судят о наличии и расположении в разрезе геологических неоднородностей. 1 табл., 2 ил.

Формула изобретения RU 2 427 007 C2

Способ совмещения трехэлектродного, вертикального и однополярного зондирований использует метод двух трехэлектродных зондирований, в котором на профиле наблюдений размещают четыре заземления на одной линии симметрично относительно точки наблюдений, совпадающей с центром установки, а пятое заземление относят в практическую «бесконечность» и подключают к одной из клемм источника электрического тока, центральные заземления подключают к измерителю электрического напряжения, при выполнении измерений к другой клемме источника электрического тока поочередно подключают крайние питающие заземления и измеряют между приемными заземлениями падение напряжения ΔUAMN и ΔUA'MN, после выполнения измерений при одном положении крайних питающих заземлений их перемещают на одинаковое заданное расстояние от центра установки и процесс измерений повторяют, выполняют указанные операции при всех заданных положениях питающих заземлений, затем по измеренным падениям напряжений для двух трехэлектродных зондирований вычисляют в каждой точке наблюдений при заданных разносах падение электрического напряжения для вертикальных электрических зондирований ΔUВЭЗ и падение электрического напряжения для однополярных зондирований ΔUМНП, по измеренным и вычисленным падениям напряжения определяется распределение кажущегося электрического сопротивления в разрезах для двух трехэлектродных и вертикальных зондирований, а также распределение в разрезе падения напряжения для однополярных зондирований и по результатам зондирований судят о наличии и расположении в разрезе геологических неоднородностей.

Документы, цитированные в отчете о поиске Патент 2011 года RU2427007C2

Способ геоэлектроразведки 1983
  • Поносов Владимир Александрович
  • Степанов Юрий Иванович
SU1111120A1
Способ электрозондирования 1987
  • Вишняков Эдуард Хамидович
  • Воронов Феликс Наумович
  • Долгов Геральд Петрович
  • Косарев Олег Владимирович
  • Леонкин Евгений Иванович
SU1518819A1
Способ вертикальных электрических зондирований при геоэлектроразведке 1984
  • Попов Владимир Александрович
  • Сушкевич Валерий Вячеславович
  • Бобровников Леонид Захарович
  • Шарапанов Николай Николаевич
SU1226384A1
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 1991
  • Вишняков Э.Х.
  • Леонкин Е.И.
  • Нежданов В.М.
  • Пронин В.П.
  • Утямышев В.Г.
  • Мынка Ю.В.
  • Черняк Е.Г.
RU2018885C1
GB 624436 А, 08.06.1949
Струг для чистовой отделки цилиндрических н конических канавок 1933
  • Плотников Ф.С.
SU39959A1
US 3975676 А, 17.08.1978
Электроразведка, Справочник геофизика, под ред
А.Г.Тархова
- М.: Недра, 1980, с.26, рис.II.2 г, с.64, с.70, рис.IV.7б.

RU 2 427 007 C2

Авторы

Федорова Ольга Ивановна

Шестаков Алексей Фёдорович

Даты

2011-08-20Публикация

2009-07-06Подача