УСТРОЙСТВО ДЛЯ ОБЕСПЕЧЕНИЯ ЖИВУЧЕСТИ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ПРИ КРАТКОВРЕМЕННОМ ДИНАМИЧЕСКОМ ВОЗДЕЙСТВИИ Российский патент 2011 года по МПК E04H9/00 

Описание патента на изобретение RU2428549C1

Изобретение относится к области строительства и может быть использовано для защиты от взрывных и ударных вертикальных воздействий сооружений, эксплуатирующихся в условиях наличия угроз различного рода ударов и других воздействий аварийного характера, возможности террористических атак и сейсмических толчков.

Известно сейсмоизолирующее устройство, обеспечивающее сейсмостойкость сооружения путем его размещения в опорных узлах. (Патент SU №1423717; МПК 4 Е04Н 9/02 [1]). Между двумя плоскими пластинами этого известного устройства установлены упругие металлические пластины, которые замоноличены в упругопластичном материале. Упругие металлические пластины выполнены в виде спиралеобразных парных колец, которые могут быть выполнены разрезными и с зазором между ними. Устройство применимо с целью снижения передаваемых динамических реакций при сейсмическом воздействии. Устройство обладает демпфирующими свойствами в горизонтальном и вертикальном направлениях. Однако недостатком данного устройства является использование дорогостоящих материалов, их ограниченный срок службы вследствие ухудшения диссипативных свойств с течением времени. Также данный способ не применим для защиты строительных конструкций от ударных и взрывных воздействий вертикальной направленности, т.к. энергополощение опоры недостаточно. Также существует угроза дополнительного воздействия восстанавливающей силы на конструкцию при возвращении опоры в исходное положение.

Известна опора сейсмостойкого здания и сооружения (Патент SU №1020552; МПК 5 Е04Н 9/02; Е02Д 27/34 [2]), которая устанавливается между фундаментной и надфундаментной частями сооружения. Опора содержит опорные пояса, выполненные в виде упругих дисков с противолежищими коническими углублениями. В центре конических углублений имеются сферические углубления. Между опорными поясами размещен подвижный промежуточный элемент в виде упругой оболочки, полость которой заполнена материалом, обладающим диссипативными свойствами. Опорные пояса опираются на упругие элементы в виде горообразных оболочек, полости которых тоже заполнены материалом, обладающим диссипативными свойствами Достоинством устройства является обеспечение снижения действия инерционных масс в основном в горизонтальном и незначительно в вертикальном направлениях, возникающих при сейсмическом воздействии. К недостаткам данного устройства следует отнести высокую трудоемкость и стоимость реализации сейсмоизолирующих опор. Кроме того, из-за наличия упругопластического материала в опорном устройстве данная опора имеет ограничения по временному ресурсу из-за ухудшения диссипативных свойств материала. Также данное устройство невозможно применить при защите строительных конструкций непосредственно от ударных и взрывных воздействий, действующих в вертикальном направлении, т.к. энергополощение опоры недостаточно. Также существует угроза дополнительного воздействия восстанавливающей силы на конструкцию при возвращении опоры в исходное положение.

Наиболее близким к предлагаемому решению является антисейсмическая опора для строительных конструкций, обеспечивающая снижение инерционных сил при сейсмическом воздействии на сооружение (Патент на изобретение SU №1399439; МПК 4 Е04Н 9/02). Опора состоит из верхнего, нижнего и промежуточного элементов. Нижний элемент прикреплен к основанию с возможностью его перемещения в вертикальных плоскостях и имеет выпуклую опорную поверхность двоякой кривизны и цилиндрическую верхнюю поверхность меньшего радиуса. Промежуточный элемент (вставка) выполнен круглого поперечного сечения, радиус которого меньше радиуса вогнутой поверхности нижнего элемента. Верхний элемент, установленный на промежуточном элементе, выполнен в виде швеллера и жестко прикреплен к строительной конструкции. Между полками нижнего и верхнего элементов образованы зазоры, размер которых соответствует максимальной величине горизонтального перемещения строительной конструкции. Достоинствами устройства являются простота реализации опорного узла и отсутствие упругопластических материалов. Устройство можно применить для повышения сейсмостойкости сооружения. Хотя опора обладает свойством податливости, однако не защищает строительные конструкции непосредственно от ударных и взрывных воздействий, действующих в вертикальном направлении, т.к. энергорассеивание, которое реализовано в узле, недостаточно.

Задачей предлагаемого изобретения является обеспечение живучести строительных конструкций при различных видах кратковременных динамических нагрузок, действующих вертикально, в том числе взрывных и однократных ударных воздействиях.

Технический результат заключается в том, что в предложенном устройстве основная часть кинетической энергии удара воспринимается и гасится промежуточными элементами (вставками), сохраняя строительную конструкцию от разрушения и обеспечивая тем самым ее живучесть. Также в предлагаемом устройстве исключается наличие угрозы восстанавливающей силы вследствие частичного либо полного разрушения промежуточных элементов (вставок).

Технический результат и решение поставленной задачи достигается следующим образом.

Устройство для обеспечения живучести строительных конструкций при вертикальном кратковременном динамическом воздействии, как и прототип, содержит опору из нижнего и верхнего металлических элементов. Нижний элемент закреплен на опорной поверхности. На верхний элемент опирается поверхность строительной конструкции. Верхний элемент может быть закреплен на поверхности строительной конструкции. Один из этих элементов закреплен с возможностью вертикального перемещения. Между нижним и верхним элементами размещен промежуточный элемент из металла круглого сечения.

В отличие от прототипа нижний и верхний элементы опоры выполнены в виде пластин, а металлическая вставка выполнена в виде сминаемой вставки и имеет поперечное сечение в виде кольца, причем длина сминаемой вставки соответствует формуле:

l - длина сминаемой вставки;

Р - допустимая расчетная вертикальная нагрузка, приходящаяся на опорную поверхность, включая собственный вес конструкции;

R - радиус кольца поперечного сечения сминаемой вставки;

[σ] - сопротивление металла при изгибе сминаемой вставки;

s - толщина стенки сминаемой вставки.

Нижний и верхний элементы соединены между собой посредством направляющих стоек, а верхний элемент закреплен на стойках с возможностью вертикального перемещения. Итоговая длина промежуточного элемента, принятая по расчету в зависимости от условий обеспечения устойчивости и удобства монтажа, может быть разделена на две и более равных между собой частей, в зависимости от этого устройство может иметь 2 или более сминаемых вставок.

Поскольку верхний элемент закреплен с возможностью вертикального перемещения, при возникновении дополнительного кратковременного динамического воздействия промежуточные элементы (вставки) сжимаются, разрушаясь частично либо полностью, тем самым воспринимая на себя кинетическую энергию удара, обеспечивая этим сохранность несущей способности строительных конструкций. Кинематический механизм, в который превращается промежуточный элемент (вставка), не восстанавливает свою исходную форму, тем самым исключается возможность возникновения восстанавливающей силы, т.е. возвратного воздействия на строительную конструкцию. Таким образом, предлагаемое устройство позволяет обеспечить сохранность несущей способности строительных конструкций, локализуя источник прогрессивного разрушения, тем самым обеспечивая живучесть сооружения в целом.

Устройство, характеризующееся предложенной совокупностью признаков, среди известных технических решений не обнаружено, что подтверждает его новизну.

В уровне техники не обнаружено устройств, которые для защиты строительных конструкций от вертикальных ударных и взрывных воздействий, во-первых, содержат полые сминаемые вставки, а во-вторых, вставки, соответствующие тем размерам, которые имеют вставки заявляемого устройства. В аналоге [2] промежуточные элементы выполнены тоже полыми (в виде упругой оболочки), но их полость заполнена материалом, обладающим диссипативными свойствами. Гашение сейсмических вертикальных реакций в [2] происходит за счет постепенного их затухания в этом устройстве, которое лишь частично снижает вертикальную сейсмическую нагрузку на строительную конструкцию. В заявляемом устройстве основная часть энергии при вертикальном кратковременном динамическом воздействии идет на разрушение вставок, воздействуя лишь незначительно малой остаточной реакцией на строительную конструкцию, которая не приводит к ее разрушению. Смятые вставки подлежат замене (конструкция устройства это позволяет осуществить), а в [2] теряют со временем диссипативные свойства и ухудшают собственную сейсмоизоляцию. Изобретение явным образом не следует из уровня техники и соответствует условию изобретательского уровня.

Изобретение пояснено чертежами.

На фиг.1 схематично изображено заявляемое устройство.

На фиг.2 - вид устройства после вертикального кратковременного динамического воздействия.

На фиг.3 - конструкция стенда для динамических испытаний.

На фиг.4 - общий вид заявляемого устройства до испытаний (фото).

На фиг.5 - общий вид заявляемого устройства после испытаний (фото).

На фиг.6 показана строительная конструкция (железобетонная балка) после испытаний вертикальной кратковременной динамической ударной нагрузкой, опертая на жесткие опоры (БД-1).

На фиг.7 показана строительная конструкция (железобетонная балка) после испытаний вертикальной кратковременной динамической ударной нагрузкой, опертая на податливые опоры, сработавшие упруго (БДУ-1).

На фиг.8 показана строительная конструкция (железобетонная балка) после испытаний вертикальной кратковременной динамической ударной нагрузкой, опертая на податливые опоры со сминаемыми вставками (полное разрушение сминаемых вставок, БДО-1).

На фиг.9 показана диаграмма развития во времени нагрузки, деформации арматуры и бетона образца БД-1 (фиг.6) и схемы расстановки тензодатчиков на арматуре и бетоне данного образца.

На фиг.10 показана диаграмма развития во времени нагрузки, деформации арматуры и бетона образца БДУ-1 (фиг.7) и схемы расстановки тензодатчиков на арматуре и бетоне данного образца.

На фиг.11 показана диаграмма развития во времени нагрузки, деформации арматуры и бетона образца БДО-1 (фиг.8) и схемы расстановки тензодатчиков на арматуре и бетоне данного образца.

На фиг.12 показана диаграмма смятия сминаемой вставки длиной 50 мм, толщиной стенки 3,2 мм и радиусом 16,2 мм в зависимости от приложенной нагрузки Р.

На фиг.13 показан процесс смятия сминаемой (полой) вставки по стадиям. Стрелкой показано направление развития кинематического механизма.

Заявляемое устройство содержит (фиг.1, 2) нижнюю металлическую пластину 1, верхнюю металлическую пластину 2, закрепленную на направляющих стойках 3 с возможностью вертикального перемещения при возникновении дополнительного кратковременного динамического вертикального воздействия. Между пластинами 1, 2 установлены промежуточные элементы (сминаемые вставки) 4, выполненные, например, из стали. Для обеспечения дополнительной устойчивости в узле промежуточных элементов (вставок) в узле может быть две и более. Нижняя пластина 1 закреплена на опорной поверхности строительной конструкции 6.

Стенд для проведения испытаний (фиг.3) содержит опоры 7, установленные на силовом полу 8, распределительную траверсу 9, падающий груз 10, направляющие копровой установки 11, силомер 12. Позицией 13 на фиг.5 показан испытуемый образец - железобетонная балка.

На фиг.9÷11 обозначениям T1÷T15 соответствуют расположения тензорезисторов, фиксирующих деформации арматуры и бетона испытуемой железобетонной балки. Схемы расстановки тензодатчиков T1÷T15 также показаны на фиг.9÷11. Шкала P(t) отображает фиксируемую динамическую нагрузку (в тоннах) во времени.

На фиг.12, 13 показаны стадии смятия вставки R1÷R3 в зависимости от действующей нагрузки Р.

Устройство выполняется следующим образом. В характерном опорном узле на опорном конструктивном элементе строительной конструкции (опорной поверхности) закрепляется податливая опора, состоящая из двух металлических пластин 1, 2 (фиг.1), направляющих стоек 3. Между металлическими пластинами 1 и 2 уложены сминаемые вставки 4. После крепления податливой опоры на нее устанавливается опираемый конструктивный элемент. Опираемая строительная конструкция может опираться с закреплением и без закрепления, в зависимости от конструктивного решения узла опирания.

Замена сминаемых вставок производится путем поддомкрачивания строительных конструкций и установки новых вставок на место отработавших сминаемых вставок. Технология демонтажа сминаемых вставок проста при низкой себестоимости используемых материалов и технологичности изготовления сминаемых вставок. В заявляемом устройстве используются материалы, физико-механические свойства которых не изменяются с течением времени, поэтому нет необходимости ограничивать технический ресурс податливых опор.

Для подтверждения эффективности предложенного технического решения были проведены многочисленные исследования напряженно-деформированного состояния железобетонных балок, подверженных вертикальному кратковременному динамическому воздействию, с использованием тензометрических датчиков (фиксируют деформации арматуры и бетона железобетонного образца), регистрируемых при помощи измерительных комплексов MIC-300 и MIC-400. Испытано три серии образцов: жесткое опирание экспериментального образца (образец незащищен и подвержен полному собственному разрушению, БД-1, фиг.6), упругое опирание (линейная область работы, полная сохранность сминаемых вставок в эксперименте, соответствует частичной защите образца аналогично с техническими решениями, предложенными в аналогах [1] и [2], БДУ-1, фиг.7), и упругопластическое с отвердением (сминаемые вставки согласно изобретению, полностью разрушенные в эксперименте, что соответствует полной защите образца с достижением поставленной цели обеспечения живучести строительной конструкции, БДО-1, фиг.8). В последнем случае расчет и подбор промежуточных элементов производится из условия упругого восприятия допустимой расчетной нагрузки при эксплуатации, приходящей на опору (стадия R1, фиг.12, 13). На фиг.13 (стадии R2-R3) показан экспериментально установленный процесс образования кинематического механизма сминаемых вставок при действии нагрузки. Кратковременное динамическое нагружение создавалось посредством копровой установки. Копровая установка представляет собой две направляющие стойки 11 (фиг.3) с закрепленным на них металлическим ригелем. К последнему подвешивается лебедка с автоматическим сбросом груза 10. Таким образом, нагрузка на балку 13 создавалась за счет энергии падающего «снаряда». Удар приходился на силомер, находящийся на горизонтальной распределительной траверсе 9 (фиг.3).

Анализ реакций силомера 12 (фиг.3) для балок 13, испытанных на кратковременную динамическую нагрузку (фиг.9÷11), показал, что при одинаковых условиях нагружения (масса и высота падения груза) пики величин динамических нагрузок оказались различны. Максимальное показание регистрируемой величины динамической нагрузки, зафиксированной для балки, испытанной на жестких опорах (БД-1, фиг.9), составило 10,97 тс. Пик динамической нагрузки балки, испытанной при упругой податливости опор, (БДУ-1, фиг.10) составил 8,09 тс и снизился в среднем на 28% по сравнению с конструкцией, испытанной при жестком опирании (БД-1, фиг.9). Пик динамической нагрузки балки, испытанной с использованием заявляемой конструкции на сминаемых опорах, сработавших в упругопластической стадии с отвердением (БДО-1, фиг.11), составил 5,87 тс и снизился в среднем на 48%. Зафиксированное снижение пиков динамических нагрузок связано с общим затягиванием времени действия нагрузки за счет увеличения податливости опор.

Как показали испытания, оптимальным податливым устройством является опора со сминаемыми вставками, сработавшими до стадии отвердения (близкое к полному разрушению), стадии R2-R3 (фиг.12, 13). Защита строительных конструкций от вертикальных кратковременных динамических воздействий с использованием заявляемого устройства дает ощутимый экономический эффект (затраты на обеспечение живучести строительной конструкции несопоставимо меньше затрат на восстановление разрушенной строительной конструкции).

Изобретение промышленно применимо, поскольку его можно многократно реализовать с достижением указанного технического результата для любых конструкций зданий и сооружений, подверженных ударному и взрывному воздействию вертикальной направленности.

Похожие патенты RU2428549C1

название год авторы номер документа
Система защиты строительных конструкций от сверхнормативных взрывных, ударных и сейсмических воздействий 2017
  • Кумпяк Олег Григорьевич
  • Однокопылов Георгий Иванович
  • Галяутдинов Заур Рашидович
  • Максимов Валерий Борисович
  • Галяутдинов Дауд Рашидович
RU2649207C1
СПОСОБ ИСПЫТАНИЯ СТРОИТЕЛЬНОЙ КОНСТРУКЦИИ НА ПОДАТЛИВЫХ ОПОРАХ С РАСПОРОМ ПРИ СВЕРХНОРМАТИВНОМ УДАРНОМ ВОЗДЕЙСТВИИ 2018
  • Кумпяк Олег Григорьевич
  • Однокопылов Георгий Иванович
  • Галяутдинов Заур Рашидович
  • Саркисов Дмитрий Юрьевич
  • Галяутдинов Дауд Рашидович
RU2698517C1
Упруго-фрикционная опора 1981
  • Кранцфельд Яков Львович
  • Лосиевская Инна Константиновна
SU1041650A1
Виброизоляционная транспортная платформа 2020
  • Кузнецов Александр Сергеевич
RU2734126C1
Горизонтальный инициирующий экран для защиты железнодорожного тоннеля 2022
  • Пищалов Юрий Вячеславович
  • Демьянов Алексей Анатольевич
  • Бирюков Юрий Александрович
  • Бирюков Дмитрий Владимирович
  • Богомаз Роман Николаевич
  • Чугреев Максим Андреевич
  • Голубев Сергей Константинович
  • Фертов Денис Николаевич
RU2797171C1
СТЕНД ДЛЯ ИСПЫТАНИЯ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА СОВМЕСТНОЕ КРАТКОВРЕМЕННОЕ ДИНАМИЧЕСКОЕ ВОЗДЕЙСТВИЕ ИЗГИБАЮЩЕГО И КРУТЯЩЕГО МОМЕНТОВ 2014
  • Родевич Виктор Викторович
  • Однокопылов Георгий Иванович
  • Арзамасцев Сергей Александрович
RU2570231C1
ВЗРЫВОЗАЩИТНАЯ КАМЕРА 2010
  • Степанов Александр Сергеевич
  • Кузьмин Владимир Петрович
  • Ногин Владимир Николаевич
  • Мухаметшин Радик Саматович
  • Гордеев Илья Николаевич
  • Липатников Максим Александрович
  • Беляков Валерий Иванович
RU2447398C1
СПОСОБ ИСПЫТАНИЯ СТРОИТЕЛЬНОЙ КОНСТРУКЦИИ ПРИ СВЕРХНОРМАТИВНОМ УДАРНОМ ВОЗДЕЙСТВИИ 2018
  • Кумпяк Олег Григорьевич
  • Однокопылов Георгий Иванович
  • Галяутдинов Заур Рашидович
  • Саркисов Дмитрий Юрьевич
  • Галяутдинов Дауд Рашидович
RU2695590C1
СПОСОБ УПРАВЛЕНИЯ ПОВЫШЕНИЕМ ЖИВУЧЕСТИ МНОГОЭТАЖНОГО ПАНЕЛЬНОГО ЗДАНИЯ ПОСЛЕ ВЗРЫВНОГО ВОЗДЕЙСТВИЯ И БЕЗОПАСНОСТИ ПРОВЕДЕНИЯ РЕМОНТНО-ВОССТАНОВИТЕЛЬНЫХ РАБОТ 2014
  • Кумпяк Олег Григорьевич
  • Однокопылов Георгий Иванович
  • Пахмурин Олег Равильевич
  • Самсонов Валерий Сергеевич
  • Галяутдинов Заур Рашидович
  • Кудяков Александр Васильевич
RU2547849C1
ЗДАНИЕ 1994
  • Коряжин С.П.
  • Бодриков О.В.
  • Скриница Б.В.
RU2078887C1

Иллюстрации к изобретению RU 2 428 549 C1

Реферат патента 2011 года УСТРОЙСТВО ДЛЯ ОБЕСПЕЧЕНИЯ ЖИВУЧЕСТИ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ПРИ КРАТКОВРЕМЕННОМ ДИНАМИЧЕСКОМ ВОЗДЕЙСТВИИ

Изобретение относится к строительству и может быть использовано для защиты сооружений от взрывных и ударных вертикальных воздействий. Устройство для обеспечения живучести строительных конструкций при кратковременном динамическом воздействии содержит опору из нижнего металлического элемента, закрепленного на опорной поверхности, и верхнего металлического элемента, на который непосредственно опирается строительная конструкция, причем один из этих элементов установлен с возможностью вертикального перемещения, и металлическую вставку круглого сечения, расположенную между нижним и верхним элементами. Нижний и верхний элементы опоры выполнены в виде пластин, а металлическая вставка выполнена в виде сминаемой вставки и имеет поперечное сечение в виде кольца, причем длина сминаемой вставки определяется по приведенной зависимости. Технический результат состоит в повышении живучести строительной конструкции при различных видах кратковременных динамических нагрузок, обеспечении сохранности несущей способности строительной конструкции, снижении материалоемкости. 3 з.п. ф-лы, 13 ил.

Формула изобретения RU 2 428 549 C1

1. Устройство для обеспечения живучести строительных конструкций при кратковременном динамическом воздействии, содержащее опору из нижнего металлического элемента, закрепленного на опорной поверхности, и верхнего металлического элемента, на который непосредственно опирается строительная конструкция, причем один из этих элементов установлен с возможностью вертикального перемещения, и металлическую вставку круглого сечения, расположенную между нижним и верхним элементами, отличающееся тем, что нижний и верхний элементы опоры выполнены в виде пластин, а металлическая вставка выполнена в виде сминаемой вставки и имеет поперечное сечение в виде кольца, причем длина сминаемой вставки соответствует формуле

l - длина сминаемой вставки;
Р - допустимая расчетная вертикальная нагрузка, приходящаяся на опорную поверхность, включая собственный вес конструкции;
R - радиус кольца поперечного сечения сминаемой вставки;
[σ] - сопротивление металла при изгибе сминаемой вставки;
s - толщина стенки сминаемой вставки.

2. Устройство по п.1, отличающееся тем, что нижний и верхний элементы соединены между собой посредством направляющих стоек, при этом верхняя пластина закреплена на направляющих стойках с возможностью вертикального перемещения.

3. Устройство по п.1, отличающееся тем, что сминаемая вставка выполнена из стали.

4. Устройство по п.1, отличающееся тем, что оно содержит две и более сминаемые вставки, установленные равномерно на нижнем элементе.

Документы, цитированные в отчете о поиске Патент 2011 года RU2428549C1

Антисейсмическая опора для строительных конструкций 1986
  • Черепинский Юрий Давыдович
  • Кравченко Андрей Анатольевич
  • Штифанов Андрей Петрович
SU1399439A1
Опора сейсмостойкого здания,сооружения 1982
  • Иванов Геннадий Павлович
  • Макаров Сергей Александрович
SU1020552A1
СЕЙСМОСТОЙКИЙ ФУНДАМЕНТ (ВАРИАНТЫ) 1994
  • Росолько Владимир Кондратьевич[By]
RU2062833C1
Упругоскользящая опора для строительных конструкций 1980
  • Кранцфельд Яков Львович
SU910989A1
СЕЙСМОСТОЙКИЙ ФУНДАМЕНТ 1991
  • Криворотов Александр Семенович
  • Криворотов Евгений Александрович
  • Распопов Александр Владимирович
RU2023111C1
US 6321492 B1, 27.11.2001
US 3771270 A, 13.11.1973.

RU 2 428 549 C1

Авторы

Кумпяк Олег Григорьевич

Однокопылов Георгий Иванович

Кокорин Денис Николаевич

Даты

2011-09-10Публикация

2010-04-05Подача