ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ Российский патент 2011 года по МПК F17D1/00 

Описание патента на изобретение RU2428621C1

Изобретение относится к газовой технике, в частности к газораспределительным станциям для снижения давления газа в газопроводе.

Известна газораспределительная станция (см. а.с. СССР №1672101, Мкл. F17D 1/00, 1991, Бюл. №31), содержащая блок управления, технологический блок с газопроводом высокого и низкого давления и емкость сбора конденсата, соединенную с газопроводом высокого давления и через запорный орган с газопроводом низкого давления.

Недостатком данной газораспределительной станции является высокая степень вероятности обмерзания дросселирующих устройств в технологическом блоке из-за явления эффекта Джоуля-Томсона при дросселировании газа, высоконасыщенного паро- и каплеобразной влагой, а также последующего образования конденсатных пробок в газопроводе низкого давления, особенно при отрицательных температурах окружающей среды, что может привести к аварийным ситуациям.

Известна газораспределительная станция (см. патент РФ №2316693, МПК F17D 1/04, 02.10.2008), содержащая блок управления, технологический блок с газопроводом высокого и низкого давления и емкость сбора конденсата, соединенную с газопроводом высокого давления и через запорный орган с газопроводом низкого давления, эжектор, вихревую трубу, установленную на газопроводе высокого давления, теплообменник, соединенный с выходом горячего потока вихревой трубы, а выход ее холодного потока соединен с конденсатоотводчиком.

Недостатком данной газораспределительной станции является энергоемкость регулирования процесса снижения давления, обусловленная дросселированием газа, поступающего по газопроводу высокого давления в газопровод низкого давления из-за отсутствия возможности использования энергии перепада давления, например, в качестве энергосберегающего источника тепла системы отопления помещения газораспределительной станции вместо осуществляемого в настоящее время сжигания газа в отопительных устройствах (возможностью регулирования системы отопления в зависимости от температуры окружающей среды).

Технической задачей предлагаемого изобретения является устранение непроизводственных расходов природного газа как источника тепла в системе отопления помещения газораспределительной станции при отрицательной температуре окружающей среды с повышением надежности работы за счет снижения энергетического уровня дросселирования газа между газопроводами высокого и низкого давления, путем использования энергии перепада давления в теплообменном аппарате с интенсификацией теплоотдачи за счет выполнения его пластинчатым и последующим расположением теплообменника в системе отопления газораспределительной станции, с возможностью регулирования расхода горячего потока вихревой трубы.

Технический результат по повышению эффективности работы достигается тем, что газораспределительная станция, содержащая блок управления, технологический блок с газопроводом высокого и низкого давления, емкость сбора конденсата, соединенную с газопроводом высокого давления и через запорный орган с газопроводом низкого давления, эжектор, вихревую трубу, установленную на газопроводе высокого давления, теплообменник, соединенный с выходом горячего потока вихревой трубы, а выход ее холодного потока соединен с конденсатоотводчиком, причем блок управления снабжен датчиком температуры наружного воздуха и регулятором расхода горячего потока вихревой трубы, расположенного на входе эжектора, а теплообменник выполнен пластинчатым и расположен на рециркуляционном контуре системы отопления и своим выходом соединен с входом эжектора, при этом выход эжектора соединен с газопроводом низкого давления, а его камера смешивания соединена с конденсатоотводчиком.

На чертеже представлена принципиальная схема газораспределительной станции.

Газораспределительная станция содержит блок управления 1, технологический блок 2 с газопроводами высокого давления 3 и низкого давления 4 и емкость сбора конденсата 5, соединенную с газопроводом высокого давления 3, при этом емкость сбора конденсата 5 дополнительно соединена через запорный орган 7 с газопроводом низкого давления 4. Кроме того, газопровод высокого давления 3 связан с газовой полостью 6 в емкости сбора конденсата 5 через конденсатоотводчик 8 и кран 9. В линии связи блок управления 1 и емкости сбора конденсата 5 установлен датчик уровня 10, кран 11 соединяет газопроводом газовую полость 6 с атмосферой. На газопроводе высокого давления 3 установлена вихревая труба 12, выход 13 ее холодного потока соединен с конденсатоотводчиком 8, а выход 14 ее горячего потока соединен с входом 15 пластинчатого теплообменника 16, расположенного в рециркуляционном контуре 17 системы отопления 18 помещения 19 газораспределительной станции. Выход 20 теплообменника 16 соединен с входом 21 эжектора 22, при этом выход 23 эжектора 22 соединен с газопроводом низкого давления 4, а его камера смешивания 24 соединена с конденсатоотводчиком 8. Блок управления 1 снабжен датчиком температуры 25 наружного воздуха и регулятором расхода 26 горячего потока вихревой трубы 12, расположенного на входе 21 эжектора 22, а для увеличения количества тепла, отдаваемого теплообменником 16 в систему отопления 18 помещения 19 газораспределительной станции, он выполнен пластинчатым, как «обладающий наибольшим коэффициентом теплоотдачи для теплообмена между нагревающим газовым теплоносителем (горячий поток природного газа от вихревой трубы 12) и нагреваемым жидкостным теплоносителем (вода системы отопления 18). По теплоэнергетическому коэффициенту пластинчатые теплообменники являются наиболее эффективными по сравнению с другими теплообменниками обычного назначения для давления до 1 МПа и температуре рабочих сред до 140-150°С и могут заменять все типы кожухотрубных, скоростных и пластинчатых конструкций системы теплоснабжения» (см., например, стр.212 и 219 Коваленко А.Н., Глущков А.Ф. Теплообменники с интенсификацией теплоотдачи. - М.: Энергоатомиздат. 1986. - 240 с., ил.).

Газораспределительная станция работает следующим образом.

Природный газ по газопроводу высокого давления 3 поступает в помещение 19 газораспределительной станции к технологическому блоку 2 для осуществления регулирования давления газа, причем регуляторы давления работают на достаточно высоком (от 3,5 и более кратном) перепаде давления между газопроводами высокого давления 3 и низкого давления 4 с невостребованным погашением избытка энергии (см. Промышленное газовое оборудование. Справочник. - Саратов: Газовик, 2002. - 624 с., ил.).

Для использования энергии движущегося в газопроводах 3 и 4 газа в качестве частичного погасителя избыточного давления применяется вихревая труба, а ее горячий поток - как источник тепла в системе отопления помещения 19. В технологическом блоке 2 природный газ из газопровода высокого давления 3 направляется в вихревую трубу 12, где в результате термодинамического расслоения разделяется на периферийный с высоким давлением горячий поток с температурой около 100°С (см., например, Меркулов А.П. Вихревой эффект и его применение в промышленности. - Куйбышев, 1969-369 с.), и холодный поток с низким давлением с температурой ниже температуры газа, поступающего в вихревую трубу 12.

Горячий поток из выхода 14 вихревой трубы 12, являющийся источником тепла, направляется на вход регулятора расхода 26, расположенного на входе 21 эжектора 22 и соединенного с входом 15 пластинчатого теплообменника 16. В зависимости от температуры окружающей среды при отрицательных температурах наружного воздуха, регистрируемых датчиком температуры 25 наружного воздуха блок управления 1 подает команду на полное или частичное поступление через регулятор расхода 26 горячего потока из вихревой трубы 12 на вход 15 пластинчатого теплообменника 16, расположенного на рециркуляционном контуре 17 системы отопления 18 помещения 19 газораспределительной станции. После нагрева воды системы отопления 18 частично остывший до 40°-50°С горячий поток из выхода 20 пластинчатого теплообменника 16 поступает на вход 21 эжектора 22. При частичной подаче горячего потока из вихревой трубы 12 на вход 15 пластинчатого теплообменника 16, когда отрицательная температура наружного воздуха не требует полной отдачи тепловой энергии на систему отопления 18 помещения 19 от вихревой трубы 12, на вход 21 эжектора поступает горячий поток как от выхода 14, так и от выхода 20 пластинчатого теплообменника 16. Холодный поток газа с конденсатом, полученным как в процессе охлаждения парообразной влаги при термодинамическом расслоении газа, так и сопутствующим движущемуся газу по газопроводу высокого давления 3, проходит через конденсатоотводчик 8, где происходит отбор конденсата с последующим его самотеком через кран 9 по трубопроводу в емкость сбора конденсата 5. При заполнении емкости сбора конденсата 5 до определенного уровня (например, 0,75 объема) от датчика уровня 10 поступает сигнал в блок управления 1 о необходимости опорожнить емкость сбора конденсата 5. Для опорожнения емкости сбора конденсата 5 закрывается кран 9 и открывается запорный кран 7. Газ, находящийся в емкости сбора конденсата 5, поступает в газопровод низкого давления 4, и тем самым в емкости сбора конденсата 5 давление снижается. Это позволяет перекачивать находящийся в емкости сбора конденсата 5 конденсат в забирающее устройство, например, в автоцистерну, перекрывая запорный кран 7 и открывая кран 11.

Очищенный от конденсата в конденсатоотводчике 8 холодный поток газа с давлением более низким, чем давление газа на входе в вихревую трубу 12, поступает в камеру смешивания 24 эжектора 22, где смешивается с горячим и/или частично охлажденным в пластинчатом теплообменнике 16 потоком, имеющим более высокое давление, чем холодный поток. Смешивание с горячим и/или частично охлажденным горячего и холодного потоков перед поступлением из выхода 23 эжектора 22 в газопровод низкого давления 4 обеспечивает получение потока газа с температурой, устраняющей появление инея и тем более возможность обмерзания конденсирующейся влаги. Использование эжектора 22 не только позволяет предотвратить потери газа, используемого в качестве источника тепла, но и предотвращает обмерзание при дросселировании.

Оригинальность предлагаемого изобретения как по устранению непроизводственных расходов природного газа в виде источника тепла, так и по повышению надежности работы в условиях возможного обмерзания продросселированной конденсирующейся влаги заключается в конструктивном решении по использованию энергии горячего потока вихревой трубы в энергосберегающий системе отопления помещения газораспределительных станций, находящихся в своем большинстве в климатических зонах с наличием отрицательных температур окружающей среды, длительность воздействия которых регистрируется датчиком температуры наружного воздуха и под действием блока управления, контролируется степень расхода теплоты, что позволяет на эффективном пластинчатом теплообменнике наиболее экономично использовать энергию перехода между газопроводами высокого и низкого давления.

Похожие патенты RU2428621C1

название год авторы номер документа
Газораспределительная станция 2019
  • Кобелев Николай Сергеевич
  • Емельянов Сергей Геннадьевич
  • Кобелев Андрей Николаевич
  • Алымов Денис Сергеевич
RU2700842C1
ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ 2011
  • Кобелев Николай Сергеевич
  • Емельянов Сергей Геннадьевич
  • Лысых Виктор Васильевич
  • Кобелев Андрей Николаевич
  • Федоров Сергей Сергеевич
  • Овчаренко Олег Алексеевич
  • Лысых Максим Викторович
RU2489638C1
Газораспределительная станция 2017
  • Кобелев Николай Сергеевич
  • Кобелев Владимир Сергеевич
  • Соколова Юлия Васильевна
RU2685627C1
Газораспределительная станция 2019
  • Кобелев Николай Сергеевич
  • Емельянов Сергей Геннадьевич
  • Кобелев Андрей Николаевич
  • Жмакин Виталий Анатольевич
  • Кобелев Владимир Николаевич
  • Дубракова Ксения Олеговна
  • Давиденко Юлия Владимировна
RU2731501C1
Газораспределительная станция 2018
  • Кобелев Николай Сергеевич
  • Емельянов Алексей Сергеевич
  • Кобелев Владимир Николаевич
  • Баздырева Алина Руслановна
  • Мамаева Карина Владимировна
  • Перепелица Никита Сергеевич
  • Сельвестров Никита Эдуардович
  • Шевченко Ирина Михайловна
  • Хмелевской Антон Олегович
RU2694699C1
ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ 2013
  • Емельянов Сергей Геннадьевич
  • Бойцерук Андрей Владимирович
  • Кобелев Николай Сергеевич
  • Ежов Владимир Сергеевич
  • Алябьева Татьяна Васильевна
  • Ишков Павел Николаевич
  • Насенков Александр Игоревич
RU2544404C1
ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ 2015
  • Емельянов Сергей Геннадьевич
  • Кобелев Николай Сергеевич
  • Алябьева Татьяна Васильевна
  • Ишков Павел Николаевич
  • Насенков Александр Игоревич
RU2601083C1
Газораспределительная станция 2016
  • Кобелев Николай Сергеевич
  • Колчунов Виталий Иванович
  • Емельянов Сергей Геннадьевич
  • Юшин Василий Валерьевич
  • Зарубин Александр Николаевич
RU2623015C1
ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ 2008
  • Емельянов Сергей Геннадьевич
  • Кобелев Николай Сергеевич
  • Насенков Игорь Витальевич
  • Кобелев Андрей Николаевич
RU2379578C1
ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ 2011
  • Емельянов Сергей Геннадьевич
  • Кобелев Николай Сергеевич
  • Ежов Владимир Сергеевич
  • Журавлев Александр Юрьевич
  • Якушев Александр Сергеевич
  • Овчаренко Олег Алексеевич
RU2463514C1

Реферат патента 2011 года ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ

Газораспределительная станция относится к газовой технике, в частности к газораспределительным станциям для снижения давления газа в газопроводе. Газораспределительная станция содержит блок управления, технологический блок с газопроводом высокого и низкого давления, емкость сбора конденсата, соединенную с газопроводом высокого давления и через запорный орган с газопроводом низкого давления, эжектор, вихревую трубу, установленную на газопроводе высокого давления, теплообменник, соединенный с выходом горячего потока вихревой трубы, а выход ее холодного потока соединен с конденсатоотводчиком. При этом блок управления снабжен датчиком температуры наружного воздуха и регулятором расхода горячего потока вихревой трубы, расположенного на входе эжектора, а теплообменник выполнен пластинчатым и расположен на рециркуляционном контуре системы отопления и своим выходом соединен с входом эжектора, при этом выход эжектора соединен с газопроводом низкого давления, а его камера смешивания соединена с конденсатоотводчиком. Технический результат - устранение непроизводственных расходов природного газа, повышение надежности работы. 1 ил.

Формула изобретения RU 2 428 621 C1

Газораспределительная станция, содержащая блок управления, технологический блок с газопроводом высокого и низкого давления, емкость сбора конденсата, соединенную с газопроводом высокого давления и через запорный орган с газопроводом низкого давления, эжектор, вихревую трубу, установленную на газопроводе высокого давления, теплообменник, соединенный с выходом горячего потока вихревой трубы, а выход ее холодного потока соединен с конденсатоотводчиком, отличающаяся тем, что блок управления снабжен датчиком температуры наружного воздуха и регулятором расхода горячего потока вихревой трубы, расположенного на входе эжектора, а теплообменник выполнен пластинчатым и расположен на рециркуляционном контуре системы отопления и своим выходом соединен с входом эжектора, при этом выход эжектора соединен с газопроводом низкого давления, а его камера смешивания соединена с конденсатоотводчиком.

Документы, цитированные в отчете о поиске Патент 2011 года RU2428621C1

ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ 2006
  • Кобелев Николай Сергеевич
  • Ежов Владимир Сергеевич
  • Емельянов Сергей Геннадьевич
  • Щедрина Ольга Юрьевна
  • Семичева Наталья Евгеньевна
  • Ишков Павел Николаевич
  • Насенков Игорь Витальевич
RU2316693C1
ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ 1999
  • Шайхутдинов Р.М.
RU2154230C1
ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ 2008
  • Емельянов Сергей Геннадьевич
  • Кобелев Николай Сергеевич
  • Насенков Игорь Витальевич
  • Кобелев Андрей Николаевич
RU2379578C1
US 5582012 A, 10.12.1996
US 6155051 A, 05.12.2000.

RU 2 428 621 C1

Авторы

Емельянов Сергей Геннадьевич

Кобелев Николай Сергеевич

Алябьева Татьяна Васильевна

Кобелев Андрей Николаевич

Вертакова Юлия Владимировна

Лысых Виктор Васильевич

Федоров Сергей Сергеевич

Гнездилова Ольга Александровна

Даты

2011-09-10Публикация

2010-04-05Подача