Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи.
Известен способ разработки нефтяной залежи, включающий монтаж в наземной коммуникации добывающей скважины устройства для автоматизированного измерения оптической плотности нефти. Измеряют абсолютную величину начальной оптической плотности нефти и измерение осуществляют при длине волн более 800 нм. Измеряют текущую оптическую плотность нефти периодически во времени. Судят о положении и перемещении водонефтяного контакта по изменению абсолютного значения оптической плотности нефти во времени и по увеличению текущей оптической плотности нефти относительно начальной оптической ее плотности (номер публикации 93003302, опубл. 1996.05.27).
Известный способ позволяет только судить о перемещении водонефтяного контакта, тогда как прочие характеристики разработки остаются вне поля внимания.
Наиболее близким к предложенному изобретению по технической сущности является способ разработки неоднородной нефтяной залежи, который включает отбор нефти через добывающие скважины, закачку рабочего агента через нагнетательные скважины, отбор проб нефти из различных точек пласта через определенные промежутки времени, определение их оптических свойств при разных длинах волн и выработку рекомендаций по разработке нефтяной залежи. При воздействии на залежь заводнением определяют вовлеченность в разработку низкопроницаемых зон с преимущественно невыработанными запасами. Для этого в качестве оптических свойств нефтей определяют оптическую плотность, коэффициенты светопропускания и светопоглощения, показатели преломления и дисперсии. Отбирают пробы нефти из всех добывающих скважин, расположенных в низкопроницаемой и высокопроницаемой зонах. После закачки рабочего агента в нагнетательные скважины ожидают эффект от воздействия в реагирующих скважинах, где тоже назначают отбор проб нефти. Повторяют отбор проб нефти из добывающих скважин с определением тех же оптических свойств нефти и по появлению следов рабочего агента в нефти делают заключение о вовлеченности в разработку низкопроницаемых зон (патент РФ №2304705, опубл. 20.08.2007 - прототип).
Известный способ позволяет проследить вытеснение нефти из низкопроницаемых зон, но не позволяет сделать заключение об эффективности воздействия на залежь, о влиянии мероприятий по увеличению нефтеотдачи залежи, а следовательно, не позволяет целенаправленно изменять вид и режимы воздействия и повышать нефтеотдачу залежи.
В предложенном изобретении решается задача повышения нефтеотдачи залежи.
Задача решается тем, что в способе разработки нефтяной залежи, включающем закачку рабочего агента через нагнетательные скважины, отбор нефти через добывающие скважины, отбор проб нефти, определение оптических свойств проб нефти, анализ результатов и выработку рекомендаций по разработке нефтяной залежи, согласно изобретению на залежи проводят мероприятия по увеличению нефтеотдачи залежи, отбор проб нефти проводят из продукции добывающих скважин, реагирующих на проведение мероприятий по увеличению нефтеотдачи, с интервалом 14-15 суток, из проб нефти центрифугированием отделяют нефть от воды, при определении оптических свойств проб нефти проводят фотоколориметрические исследования и параметрические корреляционные анализы между изменением коэффициента светопоглощения нефти и объемами добычи нефти, проводят корреляционный анализ, в ходе которого для каждой скважины рассчитывают значения коэффициента линейной корреляции Пуассона между изменением коэффициента светопоглощения нефти и объемами добычи нефти, при положительном значении коэффициента корреляции делают заключение о вовлечении в разработку запасов нефти, измененных в результате мероприятий по увеличению нефтеотдачи, при отрицательном - неизмененных, изменяют мероприятия по увеличению нефтеотдачи для увеличения вовлечения в разработку запасов нефти, измененных в результате мероприятий.
Сущность изобретения
При разработке нефтяной залежи бывает весьма трудно оценить эффективность мероприятий по увеличению нефтеотдачи залежи, скорректировать и добиться повышения их эффективности. Существующие технические решения решают эту задачу лишь частично, что не позволяет добиться существенного увеличения нефтеотдачи. В предложенном способе решается задача повышения нефтеотдачи залежи. Задача решается следующим образом.
Разработанный способ позволяет проводить определения механизма, за счет которого обеспечивается дополнительная добыча нефти: за счет улучшения вытеснения нефти или за счет увеличения охвата воздействием ранее не включенных в разработку запасов нефти. Изменение состава и физико-химических свойств добываемой нефти может быть существенным, и это связано как с изменениями в ходе взаимодействия нефти с закачиваемыми агентами, так и за счет вовлечения неохваченных запасов в процессе развития системы разработки месторождений. В первом случае добываемая нефть будет характеризоваться увеличением хромофорных соединений, так как для зон пласта, ранее охваченных воздействием закачиваемыми агентами, остаточные запасы углеводородов характеризуются большей плотностью, вязкостью, увеличенным содержанием смол, асфальтенов и другими изменениями, значение коэффициента светопоглощения (Ксп) добываемой нефти будет относительно большим. Во втором случае среди основных изменений важным будет увеличение содержания легких фракций углеводородов в добываемой нефти вследствие вовлечения мало измененных в процессе разработки месторождения запасов нефти, значение коэффициента светопоглощения добываемой нефти будет относительно меньшим.
Для осуществления способа проводится регулярный отбор проб нефти со скважин, расположенных на участках, где проводились методы увеличения нефтеотдачи (МУН). Определяется изменение Ксп добываемой нефти в процессе разработки в результате применения МУН. При этом основным методом исследования является фотоколориметрия с использованием спектрофотометров или фотоэлектроколориметров. По увеличению значения Ксп можно констатировать, что дополнительно извлечены измененные в процессе разработки запасы нефти из заводненной зоны коллектора. А по уменьшению значения Ксп можно констатировать, что дополнительно извлечены не затронутые заводнением запасы нефти, которые ранее не контактировали с закачиваемыми в пласт агентами.
Данный метод включает в себя отбор представительных проб продукции добывающих скважин, реагирующих на проведение мероприятий по методам увеличения нефтеотдачи, с интервалом 14-15 суток (отбор продукции с устьевых пробоотборников в сосуды объемом не менее 1500 мл, далее отбор шприцом из нефтяной части сосуда пробы объемом приблизительно 15 мл), отделение нефти от воды на центрифуге ОПн-3м в течение 5 минут при частоте 2500 об/мин, проведение фотоколориметрических исследований на приборе фотоколориметре КФК-3 и проведение параметрических корреляционных анализов между изменением коэффициента светопоглощения нефти и объемами добычи нефти.
Центрифуга ОПн-3м изготовлена в климатическом исполнении УХЛ4.2 по ГОСТ 15150-69, обеспечивает задание частоты вращения пробиркодержателя от 500 до 2700 об/мин с дискретностью 100 об/мин, допустимое приведенное отклонение частоты вращения от максимальной рабочей частоты вращения в диапазоне от 2000 до 2700 об/мин - не более 5%, максимальная величина фактора разделения 1670, максимальный объем центрифуги 150 мл, центрифуга обеспечивает задание времени центрифугирования в интервале от 0 до 99 мин с дискретностью 1 мин, отклонения времени отключения привода центрифуги от заданного значения ±2%, максимальное время непрерывной работы центрифуги не менее 120 мин, питание от сети переменного тока напряжением 220 В (+22, -11 В) частотой 50±0,5 Гц, мощность, потребляемая от сети переменного тока, не более 200 Вт.
Фотометр фотометрический КФК-3 предназначен для измерения коэффициентов пропускания и оптической плотности прозрачных жидкостных растворов, а также для измерения скорости изменения оптической плотности вещества и определения концентрации вещества в растворах после предварительной градуировки фотометра пользователем. Спектральный диапазон работы фотометра от 315 до 990 нм. Пределы измерения: коэффициента пропускания 0,1-100%, оптической плотности 0-3. Предел допускаемого значения основной абсолютной погрешности фотометра при измерении коэффициента пропускания 0,5% абс. Предел допускаемой основной абсолютной погрешности установки длины волны 3 нм. Предел допускаемого среднеквадратического отклонения случайной составляющей основной абсолютной погрешности 0,15% абс. Питание от сети переменного тока напряжением 220±4,4 В, частотой 50-60 Гц, мощность не более 60 Вт. В опытах используется кварцевая кювета с длиной оптического пути 1,060 мм.
Для измерения оптической плотности проб отбирается по 0,08 мл обезвоженной нефти, которая растворяется в 10 мл толуола. Измерения проводятся на приборе КФК-3 в диапазоне длин волн от 310 нм до 990 нм.
В основе всех количественных измерений в спектроскопии лежит закон Бугера-Ламберта-Бэра (сокращенно закон БЛБ), который связывает способность вещества поглощать свет с концентрацией данного вещества.
Зависимость, характеризующую ослабление света веществом, можно представить в виде:
где I и I0 - интенсивность прошедшего и падающего на образец света; С - концентрация нефти в толуоле; l - длина оптического пути; Ксп - коэффициент пропорциональности, называемый молярным коэффициентом поглощения или коэффициентом экстинкции вещества. После преобразований формула для расчета коэффициента светопоглощения принимает вид:
Поскольку в спектроскопии длина кюветы l измеряется в см, концентрация вещества - в долях единиц или в процентах, а оптическая плотность - безразмерная величина, то единицей измерения коэффициента экстинкции (Ксп) является см-1.
Коэффициент светопоглощения (Ксп) зависит от длины волны проходящего света, температуры раствора, природы растворенного вещества и не зависит от толщины поглощающего слоя и концентрации растворенного вещества. Коэффициент светопоглощения отражает индивидуальные свойства окрашенных соединений и является их определяющей характеристикой.
Далее проводится корреляционный анализ. Для каждой скважины рассчитываются значения коэффициента линейной корреляции Пуассона между изменением коэффициента светопоглощения нефти и объемами добычи нефти. Если значение коэффициента корреляции положительно, то это значит, что метод увеличения нефтеотдачи вовлек в разработку измененные запасы нефти, но если значение коэффициента корреляции отрицательно - то малоизмененные в процессе разработки запасы нефти. Механизм увеличения нефтеотдачи можно принять смешанным в случае получения в результате статистических расчетов незначимых коэффициентов корреляции при фиксировании дополнительной добычи от применения метода увеличения нефтеотдачи по динамике добычи скважинной продукции. Изменяют мероприятия по увеличению нефтеотдачи для увеличения вовлечения в разработку запасов нефти, измененных в результате мероприятий. В качестве МУН используют закачку сшиваемых полимерных систем, водно-дисперсионных полимерных систем, закачку растворов поверхностно-активных систем и их композиций, закачку углекислоты и т.д.
Пример 1
Проведены исследования промысловых проб нефти, отобранных с 3 участков Северо-Альметьевской площади Ромашкинского месторождения, на которых проводились МУН. С учетом необходимости исключения влияния каких-либо иных факторов, кроме МУН, были выбраны участки нагнетательных скважин, на которых в течение 3 лет не проводились мероприятия, которые могли бы оказать влияние на изменение коэффициента светопоглощения добываемой нефти.
На участке нагнетательной скважины №21317, имеющей три реагирующие скважины: №5710, №14776, №14777, в конце января - начале февраля 2009 года была реализована технология ГЭР.
ГЭР - многокомпонентная система, содержащая углеводородную фазу, эмульгатор Нефтенол Н3, хлористый кальций и воду. Внутрипластовое реагирование приводит к образованию эмульсии, устойчивой к размыванию, обладающей высокой гидрофобной способностью. Образующаяся водоизолирующая масса повышает фильтрационное сопротивление обводненных интервалов пласта, за счет чего увеличивается охват пласта по толщине.
Сведения об анализируемом участке представлены в табл.1.
сыщ., %
В результате статистического анализа установлена обратная линейная корреляционная связь между значениями оптической плотности проб нефти со скважины №5710 и добычей нефти. Необходимо отметить, что коллектор, вскрытый данной скважиной, имеет нефтенасыщенную толщину (5,6 м), почти в 2 раза превышающую нефтенасыщенную толщину коллектора, вскрытого остальными скважинами данного участка. Наличие прямой связи между изменением оптических свойств и изменением объемов добычи нефти обусловлено тем, что закачка ГЭР привела к доотмыву остаточной нефти в большей степени, чем вовлечению новых, ранее не охваченных заводнением зон коллектора.
Сопоставление динамики изменения оптической плотности проб нефти, отобранных со скважины №14776 рассматриваемого участка, и объемов добычи нефти из этой скважины показало наличие прямой зависимости между ними (см. табл.2, фиг.1).
Анализ изменения показателей работы скважины №14777 данного участка показывает, что на применение ГЭР скважина среагировала дополнительной добычей нефти.
корреляции со
значениями Ксп
Решено продолжить применение ГЭР на данном участке разработки.
Нефтеотдача участка разработки возросла на 1,2%.
Пример 2
Оценка влияния применения технологии СНПХ-9030, действие которой основано на комплексном воздействии соляной и плавиковой кислот, органического растворителя и масловодорастворимого поверхностно-активного вещества (ПАВ), проводилась на основе отбора проб на участке нагнетательной скважины №21347 из трех реагирующих добывающих скважин: №11321, 11322, 21345. Сведения об анализируемом участке представлены в табл.3.
На участке нагнетательной скважины в результате внедрения технологии СНПХ-9030 было зафиксировано существенное изменение оптических свойств нефти. В пробах, отобранных со скважины №11321, уменьшилось содержание оптически более плотных компонентов, а в пробах, отобранных со скважины №21345, оптическая плотность нефти существенным образом возросла (см. табл.4). Зависимость Ксп от добычи нефти по скважине №11321 имеет обратно пропорциональную связь (см. табл.4, фиг.2). Это обусловлено сложностью влияния процессов вытеснения на оптическую плотность нефти, неоднородностью по смачиваемости, локальными изменениями структуры порового пространства, различной молекулярной массой сорбированных асфальтенов. Расстояние между скважинами №21347 и №11321 во много раз превышает расстояние между скважинами №21347 и №21345, то есть объемы порового пространства между скважинами №21347 и №11321 в еще большей степени превышают объемы порового пространства между скважинами №21347 и №21345. К тому же сроки эксплуатации скважины №21345 больше сроков эксплуатации скважины №11321, если скважина №11321 была запущена в июне 2007 года, то скважина №21345 была запущена в эксплуатацию в июне 2005 года. Межскважинные расстояния, сроки эксплуатации позволяют судить о большей измененности остаточных запасов нефти порового пространства в зоне между скважинами №21347 и №21345, что также явно следует из анализа динамики оптических свойств нефти.
Изменяют мероприятия по увеличению нефтеотдачи для увеличения вовлечения в разработку запасов нефти, измененных в результате мероприятий. Для этого через нагнетательную скважину закачивают композицию ГЭР.
В результате применения ГЭР поменялся в положительную сторону Ксп, а нефтеотдача участка разработки увеличилась на 0,4%.
Пример 3
На участке скважины №10008 была использована технология композиционных систем на основе низкоконцентрированных растворов полимеров и поверхностно-активных веществ (НКПС). Применение для увеличения нефтеотдачи водных растворов полимеров в концентрациях, не приводящих к образованию малоподвижных высокопрочных гелей, нацелено на выравнивание фронта заводнения, вовлечение в разработку ранее не охваченных воздействием зон пласта. Закачка растворов поверхностно-активных веществ способствует разрушению водонефтяной эмульсии и увеличивает смачиваемость породы.
Сведения об анализируемом участке представлены в табл.5.
Несмотря на то что изменение оптической плотности пробы нефти реагирующей добывающей скважины №5613 имеет неоднозначный характер, можно наблюдать увеличение коэффициента светопоглощения нефти с увеличением ежемесячной добычи нефти (см. табл.6).
Продолжают применение НКПС на данном участке. В результате нефтеотдача участка разработки увеличилась на 1,8%.
Применение предложенного способа позволит увеличить нефтеотдачу залежи.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ | 2014 |
|
RU2568450C1 |
СПОСОБ ИССЛЕДОВАНИЯ СКВАЖИН ОПТИЧЕСКИМИ МЕТОДАМИ ДЛЯ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА ОСТАТОЧНЫХ ИЗВЛЕКАЕМЫХ ЗАПАСОВ РАЗРАБАТЫВАЕМОГО МЕСТОРОЖДЕНИЯ | 2012 |
|
RU2496982C1 |
СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНОЙ НЕФТЯНОЙ ЗАЛЕЖИ | 2006 |
|
RU2304705C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ АКТИВНЫХ, СЛАБОДРЕНИРУЕМЫХ И ЗАСТОЙНЫХ НЕФТЕНАСЫЩЕННЫХ ЗОН НЕФТЯНОЙ ЗАЛЕЖИ | 2001 |
|
RU2186204C1 |
СПОСОБ ЭКСПЛУАТАЦИИ СКВАЖИНЫ | 2006 |
|
RU2304701C1 |
Способ нестационарного отбора жидкости из коллектора трещинно-порового типа | 2018 |
|
RU2695183C1 |
СПОСОБ КОНТРОЛЯ ЗА РАЗРАБОТКОЙ НЕФТЯНОЙ ЗАЛЕЖИ | 1994 |
|
RU2082876C1 |
Способ геохимического мониторинга оценки эффективности работы скважин после применения химических методов увеличения нефтеотдачи | 2022 |
|
RU2799218C1 |
Способ оценки эффективности осадкогелеобразующих технологий добычи нефти | 2002 |
|
RU2223394C1 |
Способ определения коэффициента трещиноватости для трещиновато-кавернозного коллектора | 1980 |
|
SU918421A1 |
Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи. Обеспечивает повышение нефтеотдачи залежи. Сущность изобретения: по способу ведут закачку рабочего агента через нагнетательные скважины, отбор нефти через добывающие скважины, отбор проб нефти, определение оптических свойств проб нефти, анализ результатов и выработку рекомендаций по разработке нефтяной залежи. На залежи проводят мероприятия по увеличению нефтеотдачи залежи. Отбор проб нефти проводят из продукции добывающих скважин, реагирующих на проведение мероприятий по увеличению нефтеотдачи, с интервалом 14-15 суток. Из проб нефти центрифугированием отделяют нефть от воды. При определении оптических свойств проб нефти проводят фотоколориметрические исследования и параметрические корреляционные анализы между изменением коэффициента светопоглощения нефти и объемами добычи нефти. Проводят корреляционный анализ, в ходе которого для каждой скважины рассчитывают значения коэффициента линейной корреляции Пуассона между изменением коэффициента светопоглощения нефти и объемами добычи нефти. При положительном значении коэффициента корреляции делают заключение о вовлечении в разработку запасов нефти, измененных в результате мероприятий по увеличению нефтеотдачи, при отрицательном - неизмененных. Изменяют мероприятия по увеличению нефтеотдачи для увеличения вовлечения в разработку запасов нефти, измененных в результате мероприятий. 6 табл., 2 ил.
Способ разработки нефтяной залежи, включающий закачку рабочего агента через нагнетательные скважины, отбор нефти через добывающие скважины, отбор проб нефти, определение оптических свойств проб нефти, анализ результатов и выработку рекомендаций по разработке нефтяной залежи, отличающийся тем, что на залежи проводят мероприятия по увеличению нефтеотдачи залежи, отбор проб нефти проводят из продукции добывающих скважин, реагирующих на проведение мероприятий по увеличению нефтеотдачи, с интервалом 14-15 суток, из проб нефти центрифугированием отделяют нефть от воды, при определении оптических свойств проб нефти проводят фотоколориметрические исследования и параметрические корреляционные анализы между изменением коэффициента светопоглощения нефти и объемами добычи нефти, проводят корреляционный анализ, в ходе которого для каждой скважины рассчитывают значения коэффициента линейной корреляции Пуассона между изменением коэффициента светопоглощения нефти и объемами добычи нефти, при положительном значении коэффициента корреляции делают заключение о вовлечении в разработку запасов нефти, измененных в результате мероприятий по увеличению нефтеотдачи, при отрицательном - неизмененных, изменяют мероприятия по увеличению нефтеотдачи для увеличения вовлечения в разработку запасов нефти, измененных в результате мероприятий.
СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНОЙ НЕФТЯНОЙ ЗАЛЕЖИ | 2006 |
|
RU2304705C1 |
СПОСОБ КОНТРОЛЯ ЗА РАЗРАБОТКОЙ НЕФТЯНОЙ ЗАЛЕЖИ | 1994 |
|
RU2082876C1 |
СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО ПЛАСТА | 1992 |
|
RU2070282C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ АКТИВНЫХ, СЛАБОДРЕНИРУЕМЫХ И ЗАСТОЙНЫХ НЕФТЕНАСЫЩЕННЫХ ЗОН НЕФТЯНОЙ ЗАЛЕЖИ | 2001 |
|
RU2186204C1 |
Способ оценки эффективности осадкогелеобразующих технологий добычи нефти | 2002 |
|
RU2223394C1 |
ЦИЛИНДРИЧЕСКОЕ ДЕТОНАЦИОННОЕ УСТРОЙСТВО | 2017 |
|
RU2656650C1 |
ШАХВЕРДИЕВ А.Х | |||
и др | |||
Основные принципы системного подхода к разработке нефтяного месторождения | |||
Сб | |||
научн | |||
трудов, вып.120 | |||
- М.: ВНИПИнефть, 1995, с.25-29. |
Авторы
Даты
2011-09-20—Публикация
2010-10-20—Подача