СИСТЕМА КОЧЕТОВА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ Российский патент 2011 года по МПК F28C1/00 

Описание патента на изобретение RU2431099C1

Изобретение относится к контактным охладителям, в частности к градирням, и может быть использовано на тепловых электрических станциях для охлаждения оборотной воды.

Наиболее близким техническим решением к заявляемому объекту является решение по а.с. СССР №435442, С02В 1/10 от 04.07.72 г., включающее систему оборотного водоснабжения с применением градирен, соединенных между собой гидравлическими контурами приготовления и потребления воды (прототип).

Недостатком известного способа является сравнительно невысокая эффективность из-за невысокой степени распыла жидкости форсунками и неэкономичность из-за перерасхода воды за счет отсутствия пластинчатого оросителя и каплеуловителя.

Технический результат - повышение производительности работы градирни.

Это достигается тем, что в системе оборотного водоснабжения с применением градирен, соединенных между собой гидравлическими контурами приготовления и потребления воды, каждая из соединенных между собой градирен содержит корпус, в нижней части которой расположен бак для сбора воды с системой подпитки воды, затрачиваемой на испарение, который соединен с насосом, подающим охлажденную в градирне воду потребителю через фильтр, причем на участке между фильтром и потребителем установлена система контроля гидравлического сопротивления фильтра, состоящая из манометра и вентиля.

На фиг.1 изображена схема системы оборотного водоснабжения с применением градирен для одного потребителя; на фиг.2 изображена схема форсунки.

Система оборотного водоснабжения с применением градирен содержит градирни, соединенные между собой гидравлическими контурами приготовления и потребления воды. Для одного потребителя (фиг.1) система включает в себя корпус 1 градирни, в нижней части которой расположен бак 2 для сбора воды с системой подпитки 3 воды, затрачиваемой на испарение. Бак 2 соединен с насосом 6, который подает охлажденную в градирне воду потребителю 8 через фильтр 7. На участке между фильтром 7 и потребителем 8 установлена система контроля гидравлического сопротивления фильтра, состоящая из манометра 9 и вентиля 10. После нагрева воды в потребителе 8 она снова поступает через вентиль 11 по трубопроводу 4 в коллектор с форсунками 5, размещенными в верхней части корпуса градирни. Вода охлаждается встречным потоком воздуха, поступающего противотоком снизу, и цикл тепломассообменного процесса повторяется.

Форсунка 5 для распыливания жидкостей расположена на коллекторе, соединенном с трубопроводом 4, и имеющем проточное отверстие 12. Каждая из форсунок (фиг.2) выполнена в виде полого, осесимметричного корпуса 13, ось которого перпендикулярна оси коллектора, а по форме корпус выполнен в виде тела вращения, образованного кривой второго порядка, например сферическим, в виде усеченного эллипсоида или параболоида вращения и др. Со стороны проточного отверстия 12 трубопровода в форсунке установлен спрямляющий элемент 17, который демпфирует турбулентность потока жидкости, идущей от трубопровода к форсунке. Спрямляющий элемент выполнен в виде кольца, имеющего центральную втулку 17, с которой жестко соединены, радиально расположенные, по крайней мере, три лопасти 18, соединенные с корпусом 13 форсунки. Корпус 13 выполнен с двумя, противоположно расположенными, перпендикулярно оси форсунки, уступами 16, посредством которых через хомуты 14 с замками 15 форсунка закрепляется на коллекторе. В нижней части корпуса 13 форсунки выполнено коническое калиброванное дроссельное отверстие 20, соединенное с камерой смешения 19, которая расположена между отверстием 20 и спрямляющим элементом. Камера смешения 19 предназначена для образования вихревого турбулентного потока, формировавшегося на выходе из отверстия 20 форсунки. Для этой цели на внутренней поверхности камеры смешения имеются винтообразные канавки (не показано), которые могут быть образованы токарной обработкой по копиру, или получены литьевым способом. В результате этого на выходе из форсунки образуется мелкодисперсный и равномерный факел распыла жидкости.

Система оборотного водоснабжения с применением градирен работает следующим образом.

Эффект охлаждения в градирне достигается за счет испарения 1% циркулирующей через градирню воды, которая разбрызгивается форсунками 5 и в виде пленки стекает в бак через сложную систему каналов оросителя навстречу потоку охлаждающего воздуха, нагнетаемого вентиляторами (не показано). Эффективный каплеотделитель позволяет снизить потери воды в результате капельного уноса. Количество капельной влаги, уносимое потоком воздуха, зависит от плотности орошения и при максимальном значении 25 м3/(час·м2) не превышает 0,1% от величины объемного расхода охлаждаемой воды через градирню.

Форсунка разбрызгивающего устройства работает следующим образом.

Жидкость под давлением поступает со стороны проточного отверстия 12 коллектора в форсунку и встречает на своем пути спрямляющий элемент 17, который демпфирует турбулентность потока жидкости, идущей от коллектора к форсунке. Камера смешения 19 предназначена для образования вихревого турбулентного потока, формировавшегося на выходе из отверстия 20 форсунки, в результате чего на выходе из форсунки образуется мелкодисперсный и равномерный факел распыла жидкости. Форсунка проста в изготовлении и обслуживании.

Одним из важных моментов для наиболее эффективного использования градирен в водооборотной системе является оптимальный выбор схемы гидравлических контуров подключения. Схемы гидравлических контуров могут различаться в зависимости от количества градирен, используемых в одном контуре, а также от характера потребителя. Диапазон регулирования производительности градирни определяется характером потребителя. Самый простой гидравлический контур отдельной градирни, используемый для одного участка обслуживания, приведен на фиг.1. Вода из градирни 1 поступает в бак 2, откуда циркуляционным насосом 6 подается потребителю 8 и далее в градирню 1. В зимнее время эксплуатация градирен может усложняться из-за обмерзания их конструкций, особенно это относится к градирням, расположенным в суровых климатических условиях. Обмерзание градирен может привести к аварийному состоянию, вызывая деформации и обрушение оросителя из-за дополнительных нагрузок от образовавшегося на нем льда. Поэтому в зимний период не следует допускать колебаний тепловой и гидравлической нагрузок, необходимо обеспечивать равномерное распределение охлаждаемой воды по площади оросителя и не допускать понижения плотности орошения на отдельных участках.

Похожие патенты RU2431099C1

название год авторы номер документа
СИСТЕМА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ 2010
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2432539C1
СПОСОБ ОБОРОТНОГО ВОДОСНАБЖЕНИЯ КОЧЕТОВА С ПРИМЕНЕНИЕМ ГРАДИРЕН 2010
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2431098C1
СИСТЕМА КОЧЕТОВА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ 2012
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
  • Стареева Мария Михайловна
RU2493521C1
СИСТЕМА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ 2012
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
  • Стареева Мария Михайловна
RU2493520C1
СИСТЕМА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ 2011
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2484399C2
СИСТЕМА КОЧЕТОВА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ 2013
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
  • Стареева Мария Михайловна
RU2535450C1
СПОСОБ ОБОРОТНОГО ВОДОСНАБЖЕНИЯ КОЧЕТОВА С ПРИМЕНЕНИЕМ ГРАДИРЕН 2013
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
  • Стареева Мария Михайловна
RU2548700C1
КОМБИНИРОВАННАЯ ГРАДИРНЯ 2011
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2455602C1
КОМБИНИРОВАННАЯ ГРАДИРНЯ С РАЦИОНАЛЬНОЙ СИСТЕМОЙ ОБОРОТНОГО ВОДОСНАБЖЕНИЯ 2013
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
  • Стареева Мария Михайловна
RU2528223C1
КОМБИНИРОВАННАЯ ГРАДИРНЯ 2011
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2488058C1

Иллюстрации к изобретению RU 2 431 099 C1

Реферат патента 2011 года СИСТЕМА КОЧЕТОВА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ

Изобретение относится к контактным охладителям, в частности к градирням, и может быть использовано на тепловых электрических станциях для охлаждения оборотной воды. Система оборотного водоснабжения с применением градирен содержит градирни, соединенные между собой гидравлическими контурами приготовления и потребления воды, каждая из соединенных между собой градирен содержит корпус, в нижней части которой расположен бак для сбора воды с системой подпитки воды, затрачиваемой на испарение, который соединен с насосом, подающим охлажденную в градирне воду потребителю через фильтр, причем на участке между фильтром и потребителем установлена система контроля гидравлического сопротивления фильтра, состоящая из манометра и вентиля, при этом каждая из форсунок содержит корпус, который выполнен полым, осесимметричным, ось которого перпендикулярна оси отверстия трубы коллектора, а по форме корпус выполнен в виде тела вращения, образованного кривой второго порядка, например сферическим, в виде усеченного эллипсоида или параболоида вращения, а со стороны проточного отверстия трубы коллектора в форсунке установлен спрямляющий элемент, выполненный в виде кольца, имеющего центральную втулку, с которой жестко соединены, радиально расположенные, по крайней мере, три лопасти, соединенные с корпусом форсунки, причем корпус выполнен с двумя, противоположно расположенными, перпендикулярно оси форсунки, уступами, посредством которых через хомуты с замками форсунка закрепляется на коллекторе, при этом в нижней части корпуса форсунки выполнено коническое дроссельное отверстие, соединенное с камерой смешения, которая расположена между дроссельным отверстием и спрямляющим элементом, а на внутренней поверхности камеры смешения имеются винтообразные канавки. Технический результат - повышение производительности работы градирни. 2 ил.

Формула изобретения RU 2 431 099 C1

Система оборотного водоснабжения с применением градирен, содержащая градирни, соединенные между собой гидравлическими контурами приготовления и потребления воды, отличающаяся тем, что каждая из соединенных между собой градирен содержит корпус, в нижней части которой расположен бак для сбора воды с системой подпитки воды, затрачиваемой на испарение, который соединен с насосом, подающим охлажденную в градирне воду потребителю через фильтр, причем на участке между фильтром и потребителем установлена система контроля гидравлического сопротивления фильтра, состоящая из манометра и вентиля, при этом каждая из форсунок содержит корпус, который выполнен полым, осесимметричным, ось которого перпендикулярна оси отверстия трубы коллектора, а по форме корпус выполнен в виде тела вращения, образованного кривой второго порядка, например сферическим, в виде усеченного эллипсоида или параболоида вращения, а со стороны проточного отверстия трубы коллектора в форсунке установлен спрямляющий элемент, выполненный в виде кольца, имеющего центральную втулку, с которой жестко соединены радиально расположенные, по крайней мере, три лопасти, соединенные с корпусом форсунки, причем корпус выполнен с двумя противоположно расположенными перпендикулярно оси форсунки уступами, посредством которых через хомуты с замками форсунка закрепляется на коллекторе, при этом в нижней части корпуса форсунки выполнено коническое дроссельное отверстие, соединенное с камерой смешения, которая расположена между дроссельным отверстием и спрямляющим элементом, а на внутренней поверхности камеры смешения имеются винтообразные канавки.

Документы, цитированные в отчете о поиске Патент 2011 года RU2431099C1

Установка для воздушного охлаждения воды 1987
  • Кокорин Олег Янович
  • Нефелов Сергей Васильевич
  • Рогозин Олег Михайлович
  • Рзаев Акиф Рза Оглы
  • Пацина Ирина Николаевна
  • Леонов Александр Николаевич
SU1506235A1
Система оборотного водоснабжения 1987
  • Кузьмин Геннадий Иванович
  • Антонов Николай Михайлович
SU1506252A1
УСТРОЙСТВО ДЛЯ ОБОРОТНОГО ВОДОСНАБЖЕНИЯ ЭЛЕКТРОСТАНЦИИ С ГРАДИРНЯМИ 2002
  • Дикоп В.В.
  • Алфеев А.А.
  • Кудинов В.А.
  • Кудинов А.А.
  • Исаев А.Е.
RU2236517C2
МЕХАНИЧЕСКАЯ ФОРСУНКА 1992
  • Вешкурцев А.А.
RU2011428C1
JP 2006200849 A, 03.08.2006.

RU 2 431 099 C1

Авторы

Кочетов Олег Савельевич

Стареева Мария Олеговна

Даты

2011-10-10Публикация

2010-07-19Подача