Изобретение относится к нефтедобывающей промышленности и может быть использовано при разработке нефтяных залежей, разрабатываемых в режиме заводнения.
Как известно, остаточная нефтенасыщенность в залежах, разрабатываемых заводнением, составляет от 25 до 35%, и неизвлеченными остаются миллиарды тонн нефти. Согласно результатам многочисленных исследований большая часть остаточной нефти находится в виде капиллярно-защемленной нефти.
В 60-70 годы проводились многочисленные теоретические, лабораторные и промысловые исследования влияния водорастворимых полимеров на процессы нефтеизвлечения при заводнении. Было установлено, что в широком спектре изменения геологофизических и термобарических характеристик пласта на разных стадиях разработки применение полимерных растворов может обеспечить значительное увеличение нефтеотдачи. В то же время по мере увеличения количества проектов полимерного заводнения стали отмечаться случаи с низкой эффективностью вплоть до полного отсутствия эффекта. Предлагаемое техническое решение направлено на устранение этого недостатка.
Известны способы повышения нефтеотдачи пластов, разрабатываемых в режиме заводнения, путем закачки в пласт высокообъемных оторочек (5-50% порового пространства нефтенасыщенного коллектора) полимерных растворов [авт. св. СССР 1544958]. Закачка оторочки полимерного раствора в силу повышенной по сравнению с водой вязкостью последнего способствует увеличению охвата пласта заводнением, снижению обводненности добываемой нефти и уменьшению водонефтяного отношения к моменту достижения проектной нефтеотдачи.
Наиболее близким к заявляемому относится способ повышения нефтеотдачи нефтяной залежи, включающий последовательную закачку в нагнетательную скважину оторочек растворов водорастворимых полимеров с различной концентрацией [пат. РФ №2125648]. Закачка происходит в три этапа: первый этап -закачка раствора с повышенной концентрацией полимера при давлении на 5-15% ниже давления в линии поддержания пластового давления с целью тампонирования трещин и каналов повышенной проводимости, второй этап - закачка разбавленного раствора при давлении, равном давлению закачки первого этапа с целью стабилизации фронта заводнения, и третий этап - закачка разбавленного раствора при давлении, равном давлению в линии поддержания пластового давления с целью продвижения оторочки в пласте.
Недостатком известных вариантов технологии полимерного заводнения, в том числе и прототипа, является неопределенность в задании концентрации полимерного раствора, объема оторочки и режима ее закачки для обеспечения такого режима фильтрации, при котором возможно освобождение капиллярно-защемленной нефти. В настоящее время основным критерием подбора концентрации полимерного раствора считается создание условий изовязкостного вытеснения нефти, при котором увеличивается охват заводнением, но, и это главный недостаток, неизменным остается коэффициент вытеснения.
Цель предлагаемого изобретения - повышение нефтеотдачи пласта за счет извлечения капиллярно-замещенной нефти из коллектора.
Существуют два подхода в решении проблемы освобождения капиллярно-замещенной нефти - снижение межфазного натяжения и увеличение гидродинамического градиента давления. Несмотря на обнадеживающие результаты лабораторных экспериментов с использованием ПАВ для снижения межфазного натяжения на границе вода-нефть, эта технология не получила широкого применения в первую очередь из-за того, что сорбция ПАВ-ов на скелете породы приводит к существенному уменьшению концентрации активного вещества уже в призабойной зоне нагнетательных скважин.
До недавнего времени увеличение градиента давления в серединной части межскважинного пространства представлялось технически нереализуемой задачей, так как падение давления в пласте при удалении от забоя скважины подчиняется логарифмическому закону, даже существенное повышение давления закачки не приведет к значимому увеличению градиента давления в серединной части межскважинного пространства, где аккумулирован основной объем капиллярно-защемленной нефти.
Авторами настоящего изобретения предложен способ создания в пласте продвигающейся вместе с оторочкой полимерного раствора зоны повышенного градиента давления, размер которой достаточен для освобождения большей части капиллярно защемленной нефти.
Поставленная цель достигается за счет использования способа повышения нефтеотдачи нефтяной залежи, включающего закачку в нагнетательные скважины оторочки водного раствора полимера, при этом концентрацию полимера подбирают из условия перехода фильтрационного течения раствора полимера в пласте в режим эластической турбулентности при выполнении неравенства D/U<10θ, где U - линейная скорость продвижения оторочки в межскважинном пространстве, D - усредненный диаметр зерен пористой среды, θ - время релаксации упругих напряжений, при этом θ выбирают из предварительно полученной зависимости времени релаксации от концентрации выбранного полимера.
В результате анализа экспериментальных данных о закономерностях фильтрации вязкоупругих жидкостей, каковыми являются полимерные растворы, авторами установлено, что аномальный рост фильтрационного сопротивления, а следовательно, и градиент давления при фильтрации раствора в пористой среде связаны с достижением параметром Вейсенберга (мера соотношения вязких и упругих сил в потоке вязкоупругой жидкости) критического значения, при котором течение теряет устойчивость и возникает так называемая эластическая турбулентность. Течение полимерных растворов, являющихся вязкоупругими жидкостями, через пористую среду (или ее модель в виде укладки монодисперсных сфер) сопровождается периодическими деформациями растяжение - сжатие при перемещении элемента жидкости из поры в поровый канал и наоборот. Если время перехода меньше времени релаксации, жидкость ведет себя в течение этого времени как твердое тело, с чем, как было установлено авторами, и связан рост фильтрационного сопротивления.
Для решения поставленной задачи - увеличения нефтеотдачи за счет освобождения части капиллярно-защемленной нефти - необходимо использовать заявленный способ повышения нефтеотдачи нефтяной залежи, включающий закачку в нагнетательную скважину оторочки водного раствора полимера с концентрацией, обеспечивающей наличие у раствора времени релаксации, удовлетворяющему условию возникновения эластической турбулентности D/u<10θ.
Для определения времени релаксации упругих напряжений в жидкостях существуют простые приборы. Для этого надо поместить каплю жидкости между двумя круглыми пластинками, затем быстро развести пластинки и наблюдать, как на жидком мостике развивается тонкая шейка, которая затем превращается в жидкую нить, медленно утончающуюся со временем. Комбинация современной видеотехники с компьютером позволяет записывать и автоматически анализировать изображение во всех деталях [см., например, Соровский образовательный журнал, т.7, №8, 2001, стр.115-121]. Существуют и более простые оптические и электрические методы отслеживания эволюции радиуса нити - реологические приборы для исследования свойств текучести жидкости, определения времени релаксации упругих напряжений.
Были построены графики зависимости времени релаксации упругих напряжений при течении растворов различных полимеров в зависимости от их концентрации (фиг.1, 2, 3).
На фиг.1 представлена зависимость времени релаксации упругих напряжений растворов полиакриламида от концентрации, на фиг.2 - для растворов ксантана, на фиг.3 - биополимера Продукт БП-92.
Физической причиной аномального роста фильтрационного сопротивления, как было установлено в опытах по визуализации течения в модели пористой среды, представляющей собой канал переменного сечения (фиг.4), является потеря устойчивости ламинарного течения и возникновения так называемой эластической турбулентности при чрезвычайно малых значениях числа Рейнольдса. Частота пульсации скорости зависит от размеров пор и скорости фильтрации. Тот факт, что при достижении критических значений параметров фильтрации вязкоупругих жидкостей возможно существенное увеличение фильтрационного сопротивления, означает эквивалентный рост градиента давления внутри оторочки вязкоупругого полимерного раствора, продвигающейся в промытом водой пласте и освобождающей при этом капиллярно-защемленную нефть.
Капиллярно защемленная нефть в промытом водой пласте существует в виде отдельных кластеров, размер которых в направлении потока не превышает 1,5-2,0 метров. Следовательно, для перевода неподвижной нефти в подвижное состояние достаточно, чтобы непрерывный кластер защемленной нефти омывался потоком вязкоупругой жидкости, градиент давления внутри которого существенно отличался от градиента давления перед оторочкой и позади нее. Толщина такой оторочки должна составлять не менее 1,5-2 метров. С учетом того, что расстояние между скважинами разрабатываемых залежей составляет 500 метров, увеличение градиента давления внутри оторочки даже на порядок приведет к необходимости незначительного в пределах нескольких % увеличения давления закачки для сохранения дебитов добывающих скважин.
Следовательно, технологическая успешность реализации предлагаемого способа полимерного заводнения требует такого подбора концентрации полимерного раствора при котором, во-первых, возникает эластическая турбулентность.
Изобретение иллюстрируется следующим примером.
В эксперименте использовались следующие полимеры: полиакриламид, ксантан, продукт БП-92.
После выбора типа полимера (по критериям его устойчивости к термо- и механодеструкции, совместимости с пластовыми флюидами и т.п.), исходя из режима работы скважины, определяется θ - время релаксации упругих напряжений при различных концентрациях раствора. Строится график зависимости времени релаксации упругих напряжений при течении растворов полимера от концентрации (см. фиг.1, 2 и 3).
Расчет линейной скорости продвижения оторочки в межскважинном пространстве (там, где реализуются минимальные градиенты давления и аккумулировано большее количество защемленной нефти) определяется по формуле U=Q/(24×3600×Sфильт), где Q - суточная приемистость, Sфильт - площадь фильтрации в серединной части межскважинного пространства.
Концентрация полимера в растворе, обеспечивающая условия возникновения эластической турбулентности, что эквивалентно определению условия реализации режима вытеснения со снижением остаточной нефтенасыщенности, определяется на основании экспериментально найденной зависимости времени релаксации от концентрации полимера в растворе. В таблице 1 приведены экспериментальные данные лабораторных исследований.
Примеры 1-4, 12, 14 сравнительные, выполнены на воде.
Для всех случаев снижения остаточной нефтенасыщенности на величину, превышающую погрешность эксперимента, было соблюдено условие предлагаемого способа, а именно D/U<10θ (см. примеры 7, 8, 10, 11, 13, 15).
При несоблюдении предлагаемого неравенства, например при D/U≥10θ, наблюдаемые изменения остаточной нефтенасыщенности не превышают погрешностей эксперимента (см. примеры 5, 6, 9, 12, 14).
Проведенные лабораторные эксперименты по нефтевытеснению из промытых водой кернов растворами полимеров с правильно выбранной концентрацией свидетельствуют о возможности увеличения коэффициента вытеснения и значимого снижения остаточной нефтенасыщенности (таблица).
При выполнении Программы промыслового эксперимента по биополимерному заводнению с применением отечественного биополимера продукта БП-92 на Новогодней залежи пласта ЮВ1 и опытном участке пласта AB1 3 Самотлорского месторождения был опробован заявляемый способ; предварительные результаты свидетельствуют об эффективности заявляемого способа.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ | 2016 |
|
RU2648135C1 |
СПОСОБ РАЗРАБОТКИ ЗАЛЕЖЕЙ НЕФТИ | 2015 |
|
RU2592005C1 |
Состав реагента для разработки нефтяного месторождения заводнением и способ его применения | 2018 |
|
RU2693104C1 |
ПРИМЕНЕНИЕ ТИТАНОВОГО КОАГУЛЯНТА ДЛЯ ОБРАБОТКИ ОБВОДНЕННОГО НЕФТЯНОГО ПЛАСТА | 2015 |
|
RU2581070C1 |
СПОСОБ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТА | 2020 |
|
RU2739272C1 |
Способ разработки неоднородных по проницаемости коллекторов | 2017 |
|
RU2639341C1 |
СПОСОБ РЕГУЛИРОВАНИЯ ФРОНТА ЗАВОДНЕНИЯ НЕФТЯНЫХ ПЛАСТОВ | 1999 |
|
RU2146002C1 |
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ НА ПОЗДНЕЙ СТАДИИ ЭКСПЛУАТАЦИИ | 1998 |
|
RU2139419C1 |
СПОСОБ РЕГУЛИРОВАНИЯ ПРОФИЛЯ ПРИЕМИСТОСТИ НАГНЕТАТЕЛЬНОЙ СКВАЖИНЫ И ОГРАНИЧЕНИЯ ВОДОПРИТОКА В ДОБЫВАЮЩЕЙ СКВАЖИНЕ | 2007 |
|
RU2347897C1 |
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ | 2001 |
|
RU2191255C1 |
Изобретение относится к нефтедобывающей промышленности и может быть использовано при разработке нефтяных залежей, разрабатываемых в режиме заводнения. Обеспечивает повышение нефтеотдачи пласта за счет извлечения капиллярно-замещенной нефти из коллектора. Сущность изобретения: способ включает закачку в нагнетательные скважины оторочки водного раствора полимера. Согласно изобретению концентрацию полимера подбирают из условия перехода фильтрационного течения раствора полимера в пласте в режим эластической турбулентности при выполнении условия в соответствии с аналитическим выражением. 1 табл., 4 ил.
Способ повышения нефтеотдачи нефтяной залежи, включающий закачку в нагнетательные скважины оторочки водного раствора полимера, отличающийся тем, что концентрацию полимера подбирают из условия перехода фильтрационного течения раствора полимера в пласте в режим эластической турбулентности при выполнении неравенства
D/U<10 θ,
где U - линейная скорость продвижения оторочки в межскважинном пространстве,
D - усредненный диаметр зерен пористой среды,
θ - время релаксации упругих напряжений,
при этом θ выбирают из предварительно полученной зависимости времени релаксации от концентрации выбранного полимера.
RU 2125648 C1, 27.01.1999 | |||
СПОСОБ РЕГУЛИРОВАНИЯ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ ЗАВОДНЕНИЕМ | 1996 |
|
RU2090746C1 |
Способ добычи нефти | 1989 |
|
SU1682539A1 |
СПОСОБ ВЫТЕСНЕНИЯ НЕФТИ ИЗ НЕОДНОРОДНЫХ ПО ПРОНИЦАЕМОСТИ КАРБОНАТНЫХ ПЛАСТОВ | 1994 |
|
RU2065945C1 |
СПОСОБ РЕГУЛИРОВАНИЯ ПРОФИЛЯ ПРИЕМИСТОСТИ НАГНЕТАТЕЛЬНОЙ СКВАЖИНЫ (ВАРИАНТЫ) | 2009 |
|
RU2398958C1 |
RU 4008060 A1, 10.05.1996 | |||
US 5277830 A, 11.01.1994 | |||
БЕРЕЗИЦКИЙ С.В | |||
и др | |||
Полимеры в нефтедобыче, http: //www.energyland.info/new/news/neft-gaz/neftegaz/, 07.09.2010. |
Авторы
Даты
2011-10-27—Публикация
2010-11-08—Подача