ОПТИЧЕСКИЙ ФАЗЗИФИКАТОР Российский патент 2011 года по МПК G06E3/00 

Описание патента на изобретение RU2432599C1

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики.

Известно оптическое вычислительное устройство, предназначенное для вычитания оптических сигналов, содержащее оптические усилители, входной оптический разветвитель, две группы оптических транспарантов, оптические разветвления, кольцевое ответвление, оптический компаратор, оптическое ответвление, пару связанных оптических волноводов и оптический бистабильный элемент [Пат. RU 2103721 С1 1998, Устройство для вычитания оптических сигналов. / С.В. Соколов, А.А. Баранник].

Существенные признаки аналога, общие с заявляемым устройством, следующие: оптический транспарант, оптический разветвитель.

Известно оптическое вычислительное устройство - нелинейный степенной преобразователь [Пат. RU 2020550 С1, 1994, Оптический функциональный преобразователь / С.В. Соколов], содержащий источник когерентного излучения, дифференциатор, оптический n-выходной разветвитель, оптический транспарант, оптический n-входной объединитель, пару оптически связанных волноводов, оптический модулятор.

Существенные признаки аналога, общие с заявляемым устройством, следующие: источник излучения, оптический n-выходной разветвитель, оптический транспарант, выход источника излучения подключен ко входу оптического n-выходного разветвителя, каждый выход оптического n-выходного разветвителя подключен к соответствующему входу оптического транспаранта.

Недостатками вышеописанных устройств являются сложность конструкции и невозможность выполнения операции введения нечеткости - фаззификации, при задании входной переменной в виде нечеткого множества.

Известно оптическое вычислительное устройство - селектор минимального сигнала (CMC) [A.c. №1223259, СССР, 1986. Селектор минимального сигнала. / Соколов С.В. и др.], принятый за прототип и предназначенный для вычисления минимального сигнала из совокупности оптических сигналов, поданных на его вход. CMC содержит дифференциальные оптроны, входные оптические волноводы.

Прототип является существенным признаком предлагаемого изобретения.

Недостатком вышеописанного прототипа является невозможность выполнения операции введения нечеткости - фаззификации, при задании входной переменной в виде нечеткого множества.

Задачей изобретения является создание оптического фаззификатора, позволяющего повысить вычислительную производительность процесса фаззификации до 105-106 операций в секунду при одновременной возможности выполнения операции введения нечеткости - фаззификации, при задании входной переменной в виде нечеткого множества.

Технический результат выражается в расширении возможностей устройства - создание устройства, выполняющего операцию введения нечеткости - фаззификации, при задании входной переменной в виде нечеткого множества, а также в одновременном увеличении вычислительной производительности.

Сущность изобретения состоит в том, что в оптический фаззификатор, содержащий селектор минимального сигнала, введены источник излучения, оптический n - выходной разветвитель, первый линейный оптический транспарант, второй линейный оптический транспарант, резисторная оптопара, генератор стабильного тока, выход источника излучения подключен ко входу оптического n-выходного разветвителя, выходы которого подключены к соответствующим входам первого линейного оптического транспаранта, выходы которого подключены к соответствующим входам второго линейного оптического транспаранта, каждый выход которого подключен к соответствующему входу селектора минимального сигнала, выход селектора минимального сигнала подключен ко входу резисторной оптопары, резистор которой включен последовательно в цепь генератора стабильного тока, а выход резисторной оптопары является выходом устройства.

Оптический фаззификатор - устройство, предназначенное для вычисления в режиме реального времени значения функции:

где α(x) - функция принадлежности, описывающая терм нечеткой лингвистической переменной х;

хi - конкретное числовое («четкое») значение входной лингвистической переменной, определенного на базовой шкале Х (x1, x2, …, xn, где n - определенное число значений базовой шкалы X, хi∈X);

β(x) - функция принадлежности нечеткого множества, в виде которого представлена входная переменная х.

Функциональная схема оптического фаззификатора показана на чертеже.

Оптический фаззификатор содержит:

1 - источник излучения (ИИ) с интенсивностью n усл(овных) ед(иниц);

2 - оптический n-выходной разветвитель;

3 - первый линейный оптический транспарант (ЛОТ) с функцией пропускания, пропорциональной ;

4 - второй ЛОТ с функцией пропускания, пропорциональной ;

5 - селектор минимального сигнала (CMC), выполненный в виде CMC, описанного в [А.с. №1223259, СССР, 1986. Селектор минимального сигнала. / Соколов С.В. и др.];

VO 6 - резисторную оптопару;

G 7 - генератор стабильного тока, выполненный, например, в виде генератора тока, описанного в [Либерман Ф.Я. Электроника на железнодорожном транспорте: Учеб. пособие для вузов ж.-д. трансп. / Ф.Я. Либерман. - М: Транспорт, 1987. - 288 с., страница 190, рисунок 9.4 б], и вырабатывающий стабильный ток величиной 1 усл. ед.

Выход ИИ 1 подключен ко входу оптического n-выходного разветвителя 2. Выходы 21, 22, 23, … 2n оптического n-выходного разветвителя 2 подключены к соответствующим входам первого линейного оптического транспаранта 3. Выходы первого линейного оптического транспаранта 3 подключены к соответствующим входам второго линейного оптического транспаранта 4, каждый выход которого подключен к соответствующему входу селектора минимального сигнала 5. Выход селектора минимального сигнала 5 подключен ко входу резисторной оптопары VO 6 - светоизлучающему диоду. Резистор оптопары VO 6 включен последовательно в цепь генератора стабильного тока G 7, выход резисторной оптопары VO 6 является выходом устройства.

Работа устройства происходит следующим образом. С выхода ИИ 1 оптический поток с интенсивностью n усл. ед. поступает на вход n-выходного разветвителя 2. С выходов 21, 22, …, 2n оптического n-выходного разветвителя 2 оптические потоки единичной интенсивности поступают на входы первого ЛОТ 3 с функцией пропускания по оси ОХ, пропорциональной функции , на выходах которого формируется плоский оптический поток с интенсивностью по оси ОХ, пропорциональной функции 1/α(x). Данный оптический поток поступает на входы второго ЛОТ 4 с функцией пропускания по оси ОХ, пропорциональной функции , на выходах которого формируется оптический поток с интенсивностью по оси ОХ, пропорциональной функции 1/(α(х)·β(х)).

Данный оптический поток поступает на соответствующие входы CMC 5. Работа селектора минимального сигнала 5 описана в [А.с. №1223259, СССР, 1986. Селектор минимального сигнала. / Соколов С.В. и др.]. С выхода CMC 5 снимается сигнал напряжения, пропорциональный значению

(При этом очевидно, что минимум значения функции 1/(α(х)·(β(х)) определен для того же значения аргумента хi, для которого определен и максимум функции α(хi)·β(хi), i=1, …, n).

Выходной сигнал CMC 5 поступает на светоизлучающий диод резисторной оптопары VO 6. Сопротивление Rvo6 резистора оптопары VO 6 будет обратно пропорционально входному току резисторной оптопары [Иванов, В.И. Полупроводниковые оптоэлектронные приборы: Справочник / В.И. Иванов, А.И. Аксенов, A.M. Юшин. / Под ред. Н.Н Горюнова - М.: Энергоатомиздат, 1984. - 184 с.], т.е. выходному сигналу CMC 5, и следовательно:

Напряжение на выходе резисторной оптопары VO 6 Uвых определяется как:

где I=1 усл. ед.- ток генератора стабильного тока G 7.

Таким образом, с учетом (3), (4), напряжение на выходе резисторной оптопары VO 6 UВЫХ оказывается пропорциональным величине:

UВЫХ~α(xi)·β(xi),

т.е. пропорциональным искомому значению γ:γ~UВЫХ

Быстродействие оптического фаззификатора определяется динамическими характеристиками селектора минимального сигнала и резисторной оптопары. Селектор минимального сигнала, выполненный на лавинных фотодиодах, имеет время срабатывания до 80-100 пс, а резисторные оптопары обладают быстродействием ~ 200 мкс. Для существующих непрерывнологических систем обработки информации подобное быстродействие обеспечивает их функционирование практически в реальном масштабе времени.

Похожие патенты RU2432599C1

название год авторы номер документа
ОПТИЧЕСКИЙ ФАЗЗИФИКАТОР 2010
  • Аллес Михаил Александрович
  • Соколов Сергей Викторович
  • Ковалев Сергей Михайлович
RU2446434C1
ОПТИЧЕСКИЙ ФАЗЗИФИКАТОР 2010
  • Аллес Михаил Александрович
  • Соколов Сергей Викторович
  • Ковалев Сергей Михайлович
RU2446431C1
ОПТОЭЛЕКТРОННЫЙ НЕЧЕТКИЙ ПРОЦЕССОР 2010
  • Аллес Михаил Александрович
  • Соколов Сергей Викторович
  • Ковалев Сергей Михайлович
RU2445672C1
ОПТИЧЕСКИЙ ФАЗЗИФИКАТОР 2009
  • Курейчик Виктор Михайлович
  • Курейчик Владимир Викторович
  • Аллес Михаил Александрович
  • Ковалев Сергей Михайлович
  • Соколов Сергей Викторович
RU2416119C2
ОПТИЧЕСКИЙ ГРАНИЧНЫЙ ДИЗЪЮНКТОР НЕЧЕТКИХ МНОЖЕСТВ 2010
  • Аллес Михаил Александрович
  • Соколов Сергей Викторович
  • Ковалев Сергей Михайлович
RU2432598C1
ОПТОЭЛЕКТРОННЫЙ НЕЧЕТКИЙ ПРОЦЕССОР 2011
  • Аллес Михаил Александрович
  • Соколов Сергей Викторович
  • Ковалев Сергей Михайлович
RU2446433C1
ОПТОЭЛЕКТРОННЫЙ НЕЧЕТКИЙ ПРОЦЕССОР 2011
  • Аллес Михаил Александрович
  • Соколов Сергей Викторович
  • Ковалев Сергей Михайлович
RU2446436C1
ОПТИЧЕСКИЙ ВЫЧИСЛИТЕЛЬ ДОПОЛНЕНИЯ НЕЧЕТКОГО МНОЖЕСТВА 2011
  • Аллес Михаил Александрович
  • Соколов Сергей Викторович
  • Ковалев Сергей Михайлович
RU2463640C1
ОПТИЧЕСКИЙ ВЫЧИСЛИТЕЛЬ НЕЧЕТКОГО ВКЛЮЧЕНИЯ НЕЧЕТКИХ МНОЖЕСТВ 2010
  • Аллес Михаил Александрович
  • Соколов Сергей Викторович
  • Ковалев Сергей Михайлович
RU2441267C1
ОПТИЧЕСКИЙ ГРАНИЧНЫЙ КОНЪЮНКТОР НЕЧЕТКИХ МНОЖЕСТВ 2010
  • Аллес Михаил Александрович
  • Соколов Сергей Викторович
  • Ковалев Сергей Михайлович
RU2432602C1

Реферат патента 2011 года ОПТИЧЕСКИЙ ФАЗЗИФИКАТОР

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики. Технический результат выражается в расширении возможностей устройства - создание устройства, выполняющего операцию введения нечеткости-фаззификации, при задании входной переменной в виде нечеткого множества, а также в одновременном увеличении вычислительной производительности. Технический результат достигается за счет того, что в оптический фаззификатор, содержащий селектор минимального сигнала, введены источник излучения, оптический n-выходной разветвитель, первый линейный оптический транспарант, второй линейный оптический транспарант, резисторная оптопара, генератор стабильного тока, выход источника излучения подключен ко входу оптического n-выходного разветвителя, выходы которого подключены к соответствующим входам первого линейного оптического транспаранта, выходы которого подключены к соответствующим входам второго линейного оптического транспаранта, каждый выход которого подключен к соответствующему входу селектора минимального сигнала, выход селектора минимального сигнала подключен ко входу резисторной оптопары, резистор которой включен последовательно в цепь генератора стабильного тока, а выход резисторной оптопары является выходом устройства. 1 ил.

Формула изобретения RU 2 432 599 C1

Оптический фаззификатор, содержащий селектор минимального сигнала, отличающийся тем, что в него введены источник излучения, оптический n-выходной разветвитель, первый линейный оптический транспарант, второй линейный оптический транспарант, резисторная оптопара, генератор стабильного тока, выход источника излучения подключен ко входу оптического n-выходного разветвителя, выходы которого подключены к соответствующим входам первого линейного оптического транспаранта, выходы которого подключены к соответствующим входам второго линейного оптического транспаранта, каждый выход которого подключен к соответствующему входу селектора минимального сигнала, выход селектора минимального сигнала подключен ко входу резисторной оптопары, резистор которой включен последовательно в цепь генератора стабильного тока, а выход резисторной оптопары является выходом устройства.

Документы, цитированные в отчете о поиске Патент 2011 года RU2432599C1

Селектор минимального сигнала 1984
  • Никулин Юрий Яковлевич
  • Огреб Сергей Митрофанович
  • Соколов Сергей Викторович
  • Смирнов Юрий Александрович
SU1223259A2
УСТРОЙСТВО ДЛЯ ВЫЧИТАНИЯ ОПТИЧЕСКИХ СИГНАЛОВ 1995
  • Баранник А.А.
  • Соколов С.В.
RU2103721C1
ОПТИЧЕСКИЙ ФУНКЦИОНАЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ 1990
  • Соколов С.В.
RU2020550C1
JP 8211958 A, 20.08.1996
ОХЛАДИТЕЛЬ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 2006
  • Исмаилов Тагир Абдурашидович
  • Махмудова Марьям Магомедовна
RU2335102C1
JP 62115428 А, 27.05.1987.

RU 2 432 599 C1

Авторы

Аллес Михаил Александрович

Соколов Сергей Викторович

Ковалев Сергей Михайлович

Даты

2011-10-27Публикация

2010-10-04Подача