Родственные заявки
Для настоящей заявки испрашивается приоритет по предварительной заявке США №60/749,136 этого же заявителя, поданной 9 декабря 2005 г., полное описание которой вводится ссылкой в настоящую заявку.
Область техники, к которой относится изобретение
Изобретение относится, в общем, к области оценки крепления скважин обсадными трубами. Более конкретно настоящее изобретение относится к способу и устройству для проведения анализа связующего материала, который используется для крепления обсадных труб в скважине.
Уровень техники
В скважинах для добычи углеводородных продуктов в большинстве случаев используются трубообразные элементы (трубные конструкции), например обсадная колонна 8, устанавливаемые внутри скважины 5. Обычно обсадная колонна 8 сцепляется со стенками скважины путем подачи цемента 9 в кольцевое пространство между внешней поверхностью обсадной колонны 8 и внутренней поверхностью скважины 5. Цементное связующее не только прикрепляет обсадную колонну 8 к стенкам скважины 5, но также служит и для изоляции друг от друга смежных зон (Z1 и Z2) внутри геологической формации 18. Изоляция смежных зон может иметь большое значение, когда одна из зон содержит нефть или газ, а другая зона содержит неуглеводородный флюид, например воду. Если цемент 9, окружающий обсадную колонну, некачественный и не может обеспечить изоляцию смежных зон, то вода или другие нежелательные флюиды могут поступать в зону добычи углеводородных продуктов, что приводит к разжижению или загрязнению добываемых углеводородов.
Для обнаружения возможных некачественных связей цемента с колонной разрабатывались различные скважинные приборы 14, обеспечивающие анализ целостности крепления обсадной колонны 8 к стенкам скважины 5 с помощью цемента 9. Эти скважинные приборы 14 опускаются в скважину 5 с помощью кабель-троса 10 с использованием шкива 12 и обычно они содержат измерительные преобразователи 16, размещенные на их внешней поверхности, и при этом обеспечивается акустическая связь с флюидами в скважине. Эти измерительные преобразователи 16 в общем случае могут излучать акустические волны в обсадную колонну 8 и измерять с регистрацией амплитуду акустических волн, проходящих или распространяющихся через поверхность обсадной колонны 8. Такие характеристики связи цемента с обсадной колонной, как эффективность и целостность, могут быть определены анализом ослабления акустических волн.
В качестве такого акустического измерительного преобразователя может использоваться пьезоэлектрическое устройство, содержащее пьезоэлектрический кристалл, преобразующий электрическую энергию в механические колебания. Колебания, излучаемые пьезоэлектрическим устройством, могут передаваться в обсадную колонну так, что в свою очередь в ней формируются акустические волны. Акустические волны передают энергию трубообразного элемента для получения ответного частотного сигнала от этой конструкции, который регистрируются преобразователями-приемниками. Измерения принятых сигналов могут анализироваться в реальном времени или записываться в форме массива данных для последующей обработки. Данные могут быть в аналоговой или в цифровой форме.
Краткое изложение сущности изобретения
Предлагается способ определения сцепления между трубообразным элементом и связующим веществом. Способ включает измерение резонансных частот радиальных колебаний трубообразного элемента и сравнение полученных величин с величинами, которые получены для эталонного (контрольного) трубообразного элемента. Такое сравнение позволяет получить информацию, касающуюся сцепления, а также определить наличие воды вокруг трубообразного элемента.
Кроме того, предлагается скважинный прибор, который предназначен для осуществления указанного способа. Скважинный прибор может быть размещен внутри трубообразного элемента и содержит излучатель и приемник. Приемник способен принимать сигнал от радиальных резонансных частотных колебаний, возбужденных внутри трубообразного элемента. Полученная частотная характеристика может быть сравнена с частотной характеристикой эталонного трубообразного элемента. Прибор также может дополнительно содержать анализатор для проведения указанного сравнения.
Также предлагается способ определения застрявшего (прихваченного в скважине) трубообразного элемента, включающий измерение вынужденных колебаний внутри трубообразного элемента, сравнение измеренной частотной характеристики с частотной характеристикой эталонного трубообразного элемента и определение на основании указанного сравнения места прихватывания трубообразного элемента.
Краткое описание чертежей
В нижеприведенном описании раскрываются варианты его осуществления со ссылками на прилагаемые чертежи, на которых показано:
на фиг.1 - схематический вид устройства скважинной цементометрии предшествующего уровня техники;
на фиг.2а и 2б - иллюстрации мод колебаний для кольцевого излучателя;
на фиг.3 - схема одного из вариантов трубного испытательного устройства;
на фиг.4 - вид сечения трубного испытательного устройства;
на фиг.5 - вид частотной характеристики;
на фиг.6 - вид частотной характеристики;
на фиг.7 - вид частотной характеристики;
на фиг.8 - схематический вид сбоку одного из вариантов предлагаемого в изобретении скважинного прибора, размещенного в скважине;
на фиг.9 - схематический вид сбоку застрявшей части бурильной колонны со скважинным прибором;
на фиг.10 - вид сбоку частичного разреза части застрявшей колонны со скважинным прибором.
Варианты осуществления изобретения
Амплитуда вынужденных акустических колебаний внутри трубообразного элемента зависит от многих факторов, в частности от размеров конструкции, наличия вокруг нее цемента или наличия вокруг нее флюида вместо цемента. В известных способах для определения наличия флюида или цемента используется уменьшение во времени амплитуды акустических волн или колебаний, однако измеренная частотная характеристика акустического сигнала в них не используется. Могут быть разработаны испытательные стенды, на которых моделируются трубообразные элементы, закрепленные должным образом или плохо закрепленные, например, из-за наличия воды на внешней поверхности конструкции. По информации, полученной на испытательном стенде, можно построить частотные характеристики для использования в качестве сравнительных данных. Однако такие испытательные стенды практически неприменимы для многих ситуаций, в особенности касающихся обсаженных скважин, которые существуют уже многие годы.
В настоящем изобретении трубообразный элемент может быть, в частности, обсадной колонной, лифтовой колонной, бурильной колонной или любой иной частью, имеющей в основном цилиндрическую форму. Также для целей настоящего описания под термином "прикрепленный трубообразный элемент" понимается цилиндрическая секция, зацементированная в нужном положении, независимо оттого, что некоторые части секции могут быть не зацементированы должным образом. Аналогично под термином "неприкрепленный трубообразный элемент" понимается часть незацементированного трубообразного элемента. В общем случае незацементированная цилиндрическая конструкция находится в свободном пространстве и окружена только воздухом. Что же касается термина "свободная труба", то он относится к неприкрепленной части трубообразного элемента, которая окружена флюидом, например водой.
В одном из вариантов предлагаемого способа осуществляют возбуждение колебаний внутри трубообразного элемента на резонансных частотах и измерение соответствующего акустического сигнала. Резонансные частоты колебаний трубообразного элемента могут быть определены в результате ее облучения источником колебаний с последующим измерением колебаний, которые возбуждаются вдоль трубообразного элемента. Это может быть выполнено в графической форме путем анализа измеренных данных на графике зависимости амплитуды от частоты и определением "пиков" частотной характеристики. Далее, величины резонансных частот радиальных колебаний трубообразного элемента изменяются в соответствии с изменениями материала, который окружает или прикреплен к внешней поверхности этой конструкции. Соответственно предлагаемый в изобретении способ обеспечивает возможность оценки этих изменений резонансных частот колебаний из-за изменений материала вокруг трубообразного элемента и идентификации материала, прикрепленного к трубообразному элементу или окружающего его, на основе этих изменений резонансных частот.
Моды резонансных колебаний для длинного трубообразного элемента будут примерно такими же, как и в случае отрезка трубы (например, кольцевой части), выполненной из такого же материала, при условии, что этот отрезок трубы имеет в целом такой же диаметр и такую же толщину стенки, как и длинная труба. Таким образом, если известны моды резонансных колебаний кольца, то эти результаты можно затем аппроксимировать для случая соответствующей длинной трубы для определения резонансных частот изгибных колебаний. Необходимо отметить, что моды резонансных колебаний неприкрепленного отрезка трубообразного элемента можно определить экспериментально или расчетами.
Резонансные частоты кольцеобразного тела могут быть выражены следующим уравнением:
Параметры Кn и Qn определяются следующим образом:
Здесь n - порядок моды, а - радиус кольца, h - толщина, ρ, Е, D - плотность, модуль Юнга и изгибная жесткость, которая определяется как D=Eh2/(12(1-v2)), где v - коэффициент Пуассона. Из уравнений 1, 2 и 3 можно получить следующие выражения для собственной (резонансной) частоты.
Уравнение 4 относится к моде изгибных колебаний, а уравнение 5 относится к "пульсационной" моде.
На фиг.2а представлен вид резонансных изгибных колебаний кольца, и на фиг.2б представлен вид пульсационных колебаний, то есть мода резонансных колебаний может относиться как к изгибным, таки и к пульсационным колебаниям. Дальнейшее упрощение частотных зависимостей позволяет получить, что резонансная частота приближенно пропорциональна квадратному корню модуля Юнга материала, деленного на его плотность. Эти упрощенные зависимости отражены уравнениями 6 и 7
где Gfn и Gbn - коэффициенты, зависящие от геометрической формы и определяемые следующими уравнениями:
где А и В зависят от радиуса кольца а, толщины кольца h, номера моды n и коэффициента Пуассона v следующим образом:
В этом случае резонансная частота объекта, имеющего в сечении форму кольца или кольцеобразную форму, должна изменяться в зависимости от жесткости и массы материала, окружающего объект или прикрепленного к нему. Поскольку трубообразный элемент имеет в сечении кольцеобразную форму, это явление также относится и к трубообразным элементам.
Применяя зависимость между резонансной частотой и жесткостью и массой материала к случаю прикрепления обсадной колонны, было получено, что резонансная частота колебаний трубообразного элемента внутри скважины изменяется в зависимости от эффективности цементирования и от характеристик цемента (характеристики стали должны быть известны). В большинстве случаев, когда трубообразный элемент, например обсадная колонна, закреплена внутри скважины, то его внешняя поверхность может быть окружена цементом (и в этом случае, скорее всего, имеет место хорошее сцепление) или флюидом, например водой (и в этом случае сцепление плохое). Могут также иметься кольцеообразные микрозазоры между внешней поверхностью трубообразного элемента и цементом.
С учетом физических свойств скважинных флюидов, например воды, и большинства связующих материалов обсадной колонны, с помощью вышеприведенных уравнений можно получить, что резонансная частота трубной секции, прикрепленной связующим материалом (то есть цементом), больше, чем резонансная частота неприкрепленного трубообразного элемента, не связанного жидкостью. Аналогично резонансная частота трубной секции, окруженной жидкостью (например, водой), меньше, чем резонансная частота неприкрепленного трубообразного элемента. Этот вывод был подтвержден следующим неограничивающим примером применения варианта осуществления предлагаемого в изобретении способа.
При желании частотная характеристика отрезка трубы может быть получена путем измерения частотной характеристики трубообразного элемента. Измерения могут проводиться на всем конкретном трубообразном элементе или только на его части. Когда проводятся измерения на всем трубообразном элементе в скважине, предполагается, что некоторая ее часть плохо прикреплена, поэтому, анализируя измеренную частотную характеристику, можно определить неприкрепленные части или части, имеющие плохое сцепление. В качестве альтернативного варианта могут быть проведены измерения на части трубообразного элемента, для которой известны характеристики сцепления. Эти способы могут быть использованы для получения эмпирической базовой величины для резонансной частоты.
ПРИМЕР
Для оценки мод резонансных колебаний трубообразного элемента, окруженного разными средами, было подготовлено испытательное устройство. Испытательное устройство содержало трубообразный элемент 20, представляющий стальную трубу длиной 36 дюймов, диаметром 51/2 дюйма, и толщина ее стенок составляла 7/16 дюйма. Испытательное устройство также содержало эталонное кольцо, имеющее длину 1 дюйм, вырезанное из этой же трубы. Как можно видеть на фиг.3, трубообразный элемент 20 был снабжен девятью датчиками или измерительными преобразователями 16, приклеенными к его внешней поверхности. В качестве датчиков использовались керамические пьезоэлектрические преобразователи. На каждой из трех частей трубообразного элемента 20 было размещено по три датчика. Комплект датчиков, обозначенный буквой "С", был размещен на зацементированной части, датчики, обозначенные буквой "W", были размещены на части элемента 20, окруженной водой, и датчики, обозначенные буквой "А", были размещены на части элемента 20, окруженной воздухом. Датчики размещались с шагом 90° по окружности трубообразного элемента 20. На фиг.4 представлен вид сечения испытательного устройства. Как можно видеть, часть трубообразного элемента прикреплена цементом 9. Выше зацементированной части трубу окружает вода 22 и еще выше - воздух 24.
Измеренные частотные характеристики (ударное возбуждение) кольца в воде и воздухе приведены на фиг.5 и 6 соответственно. Измеренные резонансные частоты соответствуют пикам 26, как показано на соответствующих графиках (28а и 28b). В таблице 1 сравниваются измеренные резонансные частоты кольца в воздухе и воде и расчетные резонансные частоты кольца в воздухе. Приведенная информация позволяет установить однозначное соответствие наблюдаемых резонансных частот и соответствующих мод колебаний. Информация в таблице показывает, что добавленная масса воды смещает частоту вниз.
На фиг.7 приведена частотная характеристика трубообразного элемента, полученная с помощью датчиков, прикрепленных внутри зацементированной части трубообразного элемента 20. Датчик, излучающий сигнал, был расположен в точке 180°, а датчик, принимающий ответный сигнал, был размещен в точке 0°. Хотя график 28с содержит отклики на многих частотах, часть из которых являются резонансными частотами трубообразного элемента 20 в продольном направлении, резонансные частоты были легко идентифицированы и помечены кружками 30.
Необходимо отметить, что величины резонансных частот трубы больше, чем резонансные частоты кольца, вырезанного из этой трубы. В таблице 2 приведены резонансные частоты кольца и трубы в воздухе. Эта разница частот ожидаема и находится в соответствии с теорией, поскольку более длинная труба обладает дополнительной радиальной жесткостью по сравнению с кольцом, длина которого невелика.
Измерения также показывают, что когда с трубой соединен цемент, соответствующее затухание увеличивается. Затухание наилучшим образом описывается с использованием коэффициента затухания, η=1/2Q, где Q - коэффициент добротности для резонанса. Коэффициент Q определяется по формуле
Q=FR/F-3dB,
где FR - резонансная частота, a F-3dB - ширина частотного пика, измеренная на уровне - 3dB от вершины пика. Коэффициент Q следует отличать от величины Qn вышеприведенных уравнений (1)-(5). В таблице 3 приведены резонансные частоты (FR) и коэффициенты затухания (η) для всех трех частей трубы, соприкасающихся с воздухом, водой и цементом. Измерения проводились через пять дней после цементирования трубы.
Результаты проведенных экспериментов подтверждают, что вода добавляет массу (инерцию) трубообразному элементу, в результате чего уменьшается резонансная частота (964 Гц в воде по сравнению с 1192 Гц в воздухе).
Напротив, цементная связь делает трубообразный элемент более жестким, в результате чего моды резонансных колебаний увеличиваются (а именно, 1736 Гц для цемента по сравнению с 1192 Гц для воды). Таким образом, сравнивая измеренные моды колебаний трубообразного элемента 20, размещенной внутри скважины 5, с модами колебаний (измеренными или вычисленными) кольца, диаметр и толщина стенок которого практически такие же, как и у трубообразного элемента, можно произвести оценку наличия или качества цементирования вокруг трубообразного элемента 20. Это может быть особенно полезно в том случае, когда обсадная или лифтовая колонна находится в скважине уже некоторое время, и образцы колец ранее установленного трубообразного элемента 20 отсутствуют. Кольцо практически такого же диаметра и с такой же толщиной стенок, как и у трубообразного элемента, может быть изготовлено, и на нем могут быть проведены измерения для получения эталонных данных, которые могут быть использованы для сравнения. Дополнительно параметры резонанса для эталонного трубообразного элемента могут быть получены расчетным путем с использованием вышеуказанных соотношений.
Таким образом, сцепление между трубообразным элементом и связующим веществом может быть оценено путем сравнения измеренной резонансной частоты с резонансной частотой эталонного трубообразного элемента. В настоящем описании под связующим веществом понимаются вещества, подаваемые в затрубное кольцевое пространство, и они включают все вещества, используемые для закрепления трубообразного элемента внутри скважины и/или для изоляции вдоль этого трубообразного элемента. Термин "эталонный трубообразный элемент" охватывает трубообразные элементы, закрепленные связующим веществом, незакрепленные трубообразные элементы, а также свободные трубообразные элементы. Зная состояние эталонного трубообразного элемента (а именно закреплен, не закреплен или свободен) и его соответствующую резонансную частоту, можно произвести сравнение измеренной частоты трубообразного элемента с частотой эталонного трубообразного элемента для оценки сцепления трубообразного элемента. Вышеописанный алгоритм может быть использован для определения механических характеристик связующего вещества. К таким механическим характеристикам относятся: плотность, модуль Юнга, объемная упругость, коэффициент Пуассона и сейсмическая скорость связующего вещества.
На фиг.8 приведена схема скважинного прибора 40, применимого для оценки сцепления между трубообразным элементом и связующим веществом. На фиг.8 показана обсадная колонна 36, размещенная в скважине 32, которая проходит сквозь подземную формацию 38. Связующее вещество содержит цемент 44 для изоляции зон внутри формации 38 и для прикрепления обсадной колонны 36 к стенкам скважины 32. Скважинный прибор 40 подвешен в скважине 32 на кабель-тросе 34, который может опираться на шкив 35, находящийся на поверхности. Кабель-трос 34 может использоваться не только для того, чтобы опускать, поддерживать и поднимать скважинный прибор 40 в скважине 32, но и для того, чтобы передавать информацию между прибором 40 и поверхностью 45. По кабель-тросу 34 к скважинному прибору 40 дополнительно может быть подключена система обработки информации (СОИ) 47.
В варианте предлагаемого в изобретении скважинного прибора 40, представленном на фиг.8, измерительные преобразователи 42 размещены на скважинном приборе 40. Измерительные преобразователи 42 могут представлять комбинацию излучателей, приемников, или же один или несколько измерительных преобразователей могут выполнять функции как излучателя, так и приемника. В качестве излучателей могут использоваться пьезоэлектрические устройства, электромагнитные акустические преобразователи, клиновидные преобразователи, импульсные лазеры, резонаторы изгибных колебаний или их комбинации. С помощью установленных измерительных преобразователей 42 скважинный прибор может излучать сигнал, например акустические волны, в обсадную колонну 36, в результате чего в ней возбуждается акустический сигнал. Приемники прибора 40 измеряют сигнал, возбужденный в обсадной колонне 36 и распространяющийся по ней. Излучатели настроены таким образом, чтобы излучать сигнал, возбуждающий в обсадной колонне 36 колебания на резонансных частотах, которые обнаруживаются приемником. Таким образом, скважинный прибор 40 устроен так, чтобы измерять вынужденные колебания обсадной колонны 36, включая радиальные колебания на резонансной частоте.
В одном из вариантов осуществления способа скважинный прибор 40 перемещают в обсадной колонне 36 (вверх или вниз) и с помощью излучателей возбуждают в ней акустический сигнал, который измеряется приемными устройствами. Записанные сигналы могут анализироваться в соответствии со способом анализа сигналов, описанным выше, то есть сцепление трубообразного элемента оценивается по результату сравнения с резонансными частотами эталонного трубообразного элемента.
Записанная информация может храниться в скважинном приборе 40 для последующего анализа или может передаваться на поверхность, например по кабель-тросу 34 для анализа в реальном времени. Рассмотренный анализ содержит стадии и способы, описанные выше, в том числе стадии и способы, которые содержат прием измеряемых колебаний, сравнение полученной частотной характеристики с частотной характеристикой эталонного трубообразного элемента и оценку сцепления на основании такого сравнения. Может быть использован анализатор, который специально разработан для выполнения стадий такого анализа, используемого в отношении записанных акустических сигналов. Анализатор может быть размещен вместе со скважинным прибором 40 или иным образом размещен внутри скважины 32. Кроме того, анализатор может быть размещен на поверхности, являясь либо частью, либо всей системой анализа, при этом остальная часть может располагаться в скважине или в другом месте.
Как показано на фиг.8, система СОИ может быть соединена со скважинным прибором 40 по кабель-тросу 34. Система СОИ 47 может использоваться для управления излучением описанных акустических сигналов и/или приемом и последующей записью сигналов. Кроме того, система СОИ может использоваться для сохранения полученных данных, а также для преобразования данных в формат, пригодный для восприятия. Система СОИ 47 может быть размещена на поверхности, в скважине или частично на поверхности и частично под землей. Система СОИ 47 может содержать процессор, оперативную память и постоянное запоминающее устройство, которые доступны для процессора, и алгоритмы выполнения вышеописанных стадий.
На фиг.9 представлена схема варианта предлагаемого в изобретении способа, в котором трубообразный элемент представляет бурильную колонну 56. Как можно видеть, бурильная колонна 56 застряла в скважине, сцепившись с глинистой коркой 60, которая покрывает стенку 58 скважины 52. В большинстве случаев бурильная колонна заклинивается, приклеившись к стенке 58 скважины, из-за разностного давления (показанного стрелками) между скважиной 52 и окружающей формацией 54. Эта разница давлений, определяющая неравновесное состояние, создается при подаче жидкостей, имеющих высокую плотность, в скважину 52 до тех пор, пока давление в скважине не превысит внутрипластовое давление, при этом разница давлений может вызывать миграцию жидкости из скважины 52 в формацию 54. Одним из результатов такого состояния является то, что бурильная колонна проходит слишком близко от стенки 58 скважины, и миграция жидкости может отклонить бурильную колонну 56 к стенке 58 скважины, в результате чего происходит "прихватывание" колонны.
В то время как застрявшая бурильная колонна 56 может быть освобождена с помощью приложенных к ней ударных нагрузок или вибрации или вытягиванием ее с поверхности с приложением тягового усилия, которое значительно превышает вес незаклиненной колонны, однако в некоторых случаях подъем может потребовать разрезания бурильной колонны 56. При любом способе подъема колонны необходимо определить, какая часть (части) бурильной колонны 56 прихвачена, для того, чтобы выбрать наиболее подходящую тактику действий. Сцепление между стенкой скважины и внешней поверхностью бурильной колонны 56 может быть оценено с помощью способа, используемого для оценки сцепления между трубообразным элементом и связующим средством. Возбуждая колебания трубообразного элемента (бурильной колонны) в дискретных точках, разнесенных по ее длине, с помощью сигнала, обеспечивающего получение ответных сигналов на резонансных частотах, измеряя колебания на резонансных частотах и сравнивая полученные данные с данными для эталонного трубообразного элемента, можно определить, какая часть трубообразного элемента находится в контакте со стенкой скважины. Знание ситуации с прихватыванием бурильной колонны в скважине обычно содержит информацию о месте/глубине зоны, где колонна прихвачена стенкой скважины. Предлагаемый в настоящем изобретении способ дополнительно обеспечивает возможность определения кроме глубины, также и азимута, на котором находится глинистая корка, прихватившая бурильную колонну.
На фиг.9 показано, как скважинный прибор 40, снабженный измерительными преобразователями 42, может быть введен внутрь прихваченной бурильной колонны 56. Измерительные преобразователи на скважинном приборе 40 могут излучать сигнал, предназначенный для того, чтобы возбудить ответные радиальные колебания на резонансных частотах трубообразного элемента (бурильной колонны) и могут также принимать ответные сигналы.
На фиг.10 показана часть трубообразного элемента 64, установленного в обсаженной скважине 62, которая содержит обсадную колонну 63, закрепленную в обсаженной скважине 62 цементом 65. Лифтовая колонна 64 прикреплена к обсадной колонне 63 с помощью пакера 67. В скважине на верхней части пакера 67 в непосредственной близости от лифтовой колонны 64 может скапливаться обломочный материал 70 и другие отложения. Со временем может накопиться такое количество обломочного материала 70, которое заклинит лифтовую колонну внутри обсадной колонны 63, и ее будет невозможно поднять. Выбор способа подъема застрявшей лифтовой колонны зависит от того, как и где произошло заклинивание колонны. Так же, как и в случае связующего вещества и глинистой корки, обломочный материал 70, окружающий лифтовую колонну 64, может быть обнаружен с помощью скважинного прибора 40. Таким образом, опуская скважинный прибор 40 внутри лифтовой колонны 64, измеряя резонансные частоты радиальных колебаний и сравнивая их с резонансными частотами эталонного трубообразного элемента, можно произвести оценку того, окружена или нет лифтовая колонна в зоне, прилегающей к пакеру 67, обломочным материалом 70.
Таким образом, предлагаемый в настоящем изобретении способ обеспечивает выполнение поставленных задач и обладает вышеуказанными и другими достоинствами и преимуществами, ему присущими. В то время как предпочтительный вариант осуществления изобретения был описан с целью его иллюстрации и пояснения, возможны различные изменения его выполнения для получения желаемых результатов. Например, резонансная частота эталонного трубообразного элемента может быть получена экспериментально путем измерений или же ее значение может быть вычислено с помощью вышеприведенных выражений. Эти и другие аналогичные модификации, которые могут быть предложены специалистами в данной области техники, охватываются сущностью настоящего изобретения, раскрытой в описании, и объемом прилагаемой формулы изобретения.
Изобретение относится к области крепления скважин обсадными трубами, а более конкретно к анализу сцепления обсадных труб и связующего материала. Техническим результатом изобретения является повышение точности оценки качества сцепления. Для этого излучают в трубообразный элемент сигнал с возбуждением радиальных резонансных частотных колебаний. Измеряют резонансную частотную характеристику радиальных колебаний, возбужденных внутри размещенного в скважине трубообразного элемента. Получают резонансную частотную характеристику радиальных колебаний по меньшей мере для прикрепленного или неприкрепленного эталонного трубообразного элемента, имеющего примерно такую же резонансную частотную характеристику, как и размещенный в скважине трубообразный элемент. Сравнивают измеренную частотную характеристику размещенного в скважине трубообразного элемента с резонансной частотной характеристикой радиальных колебаний по меньшей мере для прикрепленного или неприкрепленного эталонного трубообразного элемента. Устанавливают, что размещенный в скважине трубообразный элемент прикреплен или не прикреплен, если его измеренная резонансная частотная характеристика радиальных колебаний примерно такая же, как для прикрепленного или неприкрепленного эталонного трубообразного элемента соответственно. 7 з.п. ф-лы, 11 ил., 3 табл.
1. Способ оценки сцепления трубообразного элемента, размещенного в скважине, в котором
излучают в трубообразный элемент сигнал с возбуждением радиальных резонансных частотных колебаний,
измеряют резонансную частотную характеристику радиальных колебаний, возбужденных внутри размещенного в скважине трубообразного элемента,
получают резонансную частотную характеристику радиальных колебаний по меньшей мере для прикрепленного или неприкрепленного эталонного трубообразного элемента, имеющего примерно такую же резонансную частотную характеристику, как и размещенный в скважине трубообразный элемент,
сравнивают измеренную частотную характеристику размещенного в скважине трубообразного элемента с резонансной частотной характеристикой радиальных колебаний по меньшей мере для прикрепленного или неприкрепленного эталонного трубообразного элемента, и
устанавливают, что размещенный в скважине трубообразный элемент прикреплен, если его измеренная резонансная частотная характеристика радиальных колебаний примерно такая же, как для прикрепленного эталонного трубообразного элемента, или устанавливают, что размещенный в скважине трубообразный элемент не прикреплен, если его измеренная резонансная частотная характеристика радиальных колебаний примерно такая же, как для неприкрепленного эталонного трубообразного элемента.
2. Способ по п.1, в котором резонансную частотную характеристику радиальных колебаний для неприкрепленного эталонного трубообразного элемента получают, когда эталонный трубообразный элемент окружен субстанцией, выбранного из группы, включающей воздух и воду.
3. Способ по п.1, в котором характеристики связующего вещества известны.
4. Способ по п.1, в котором эталонный трубообразный элемент не прикреплен.
5. Способ по п.1, в котором при осуществлении оценки сцепления устанавливают присутствие флюида в зоне, окружающей трубообразный элемент.
6. Способ по п.1, в котором резонансную частотную характеристику радиальных колебаний эталонного трубообразного элемента получают путем вычислений.
7. Способ по п.1, в котором резонансную частотную характеристику радиальных колебаний эталонного трубообразного элемента получают эмпирически.
8. Способ по п.1, в котором эталонный трубообразный элемент представляет собой кольцо с, по существу, таким же диаметром, толщиной и из такого же материала, как и размещенный в скважине трубообразный элемент.
US 5907131 А, 25.05.1999 | |||
Способ определения места прихвата бурового инструмента | 1983 |
|
SU1160014A1 |
GB 2002902 A, 28.02.1979 | |||
Способ выделения объемных дефектов цементного кольца в обсаженных скважинах | 1985 |
|
SU1348505A1 |
Преобразователь для акустического каротажа | 1978 |
|
SU746369A1 |
КОЛОННА УТЯЖЕЛЕННЫХ БУРИЛЬНЫХ ТРУБ | 1992 |
|
RU2029850C1 |
Способ обнаружения утечки в обсадных колоннах | 1987 |
|
SU1439428A1 |
US 3732947 A, 15.05.1973 | |||
US 3340953 A, 12.09.1967. |
Авторы
Даты
2011-11-20—Публикация
2006-12-11—Подача