Изобретение относится к средствам защиты от электромагнитного излучения.
Известен защитный экран по патенту РФ №2109072 (прототип), содержащий корпус и пластину из защитного материала.
Недостатками известного экрана являются сравнительно невысокие защитные свойства.
Технический результат - повышение эффективности защиты оператора от электромагнитного излучения.
Это достигается тем, что в защитном экране от воздействия электромагнитных излучений корпус выполнен в виде соединенных между собой вертикальной и горизонтальной поверхностей, между которыми расположен экранирующий элемент, выполненный в виде сотовой решетки, при этом форма ячеек сотовой решетки представляет собой в сечении, перпендикулярном оси ячейки, либо правильный шестиугольник, либо шестиугольник с неравными ребрами: четыре попарно параллельных ребра и соединенных с ними два параллельных ребра меньшего размера, причем грани многогранников сотовой решетки, включающей два параллельных ребра меньшего размера, расположены параллельно вертикальной поверхности, а грани, содержащие четыре попарно параллельных ребра, расположены под углом к вертикальной и горизонтальной поверхностям.
На фиг.1 представлена схема защитного экрана от воздействия электромагнитных излучений, на фиг.2 - вариант выполнения экранирующего элемента, на фиг.3 - композиционный материал для защиты от электромагнитного излучения.
Защитный экран от воздействия электромагнитных излучений содержит корпус, выполненный в виде соединенных между собой вертикальной 1 и горизонтальной 3 поверхностей, между которыми расположен экранирующий элемент 2, выполненный в виде сотовой решетки. Форма ячеек сотовой решетки представляет собой в сечении, перпендикулярном оси ячейки, либо правильный шестиугольник (фиг.2), либо шестиугольник с неравными ребрами: четыре попарно параллельных ребра 6 и соединенных с ними два параллельных ребра 4 меньшего размера (фиг.1). При этом грани многогранников сотовой решетки, включающей два параллельных ребра 4 меньшего размера, расположены параллельно вертикальной поверхности 1, а грани, содержащие четыре попарно параллельных ребра 6, расположены под углом к вертикальной 1 и горизонтальной 3 поверхностям.
Экранирующий элемент 2 защитных экранов обработан композиционным материалом для защиты от электромагнитного излучения.
Композиционный материал (фиг.3) для защиты от электромагнитного излучения состоит из полимерной основы с частицами 7 и 9, в которой распределены частицы 8 соединений - (Fe, Si) или - Со с нанокристаллической структурой объемной плотностью (0,6÷1,4)·10-5 1/нм3. Полимерная основа для фиксации положения частиц порошка с нанокристаллической структурой выполнена в виде чередующихся между собой элементов структуры с частицами 7 и 9, расположенных под углом 90° друг к другу, а каждый из элементов с частицами выполнен в виде расположенных в параллельных рядах частиц вытянутой формы, причем частицы, расположенные слева и справа от нее, сдвинуты на величину, не превышающую половины максимального размера частицы. Использование в качестве наполнителя материала, обладающего нанокристаллической структурой, обеспечивает увеличение магнитной проницаемости.
Экспериментально установлено, что при объемной плотности нанокристаллов в аморфной матрице менее 0,6·10-5 1/нм3 эффект повышения значения магнитной проницаемости не наблюдается. При объемной плотности нанокристаллов в аморфной матрице больше чем 1,4·10-5 1/нм3, происходит уменьшение значения магнитной проницаемости. Следовательно, оптимальным является следующий диапазон значений объемной плотности нанокристаллов в аморфной матрице: больше 0,6·10-5 1/нм3, но менее 1,4·10-5 1/нм3.
Защитный экран от воздействия электромагнитных излучений работает следующим образом.
В качестве экранирующих элементов 2 защитных экранов может быть применен листовой металл, металлические сетки. Сотовые решетки (фиг.1 и 2), применяются для экранирования электромагнитных полей в частотных диапазонах: представленные на фиг.1 - до 1 ГГц; на фиг.2 - до 10 ГГц.
Смотровые окна в камерах с защитными экранами экранируют особым стеклом, покрытым тонким слоем двуокиси олова. Фидерные двухпроводные линии, подводящие ток к рабочим контурам, необходимо экранировать стальными или алюминиевыми трубами. Для уменьшения отражения электромагнитных волн в помещении, где установлены защитные экраны, стены и потолок необходимо покрывать специальной краской (НТСО 014-003) или специальными поглощающими материалами (магнитодиэлектрические пластины типа ХВ, резиновые коврики ВКФ-1, В2-2, В2-3 и др.). Для увеличения экранирующей способности помещений стены и перекрытия покрывают металлическими сетками и листами. Наилучший экранирующий эффект дают цветные металлы (медь, латунь, алюминий и др.). Благодаря высоким коэффициентам поглощения и почти полному отсутствию волнового сопротивления металлы обладают высокой отражающей и поглощающей способностью, поэтому для изготовления защитных экранов широко применяются кожухи, камеры, кабины, а также облицовка стен и перекрытий.
Композиционный материал работает следующим образом.
Электромагнитная волна, проникшая в глубь материала, интенсивней поглощается в нем за счет более высокой поглощающей способности нанокристаллической структуры, обладающей большей магнитной проницаемостью по сравнению с аморфной. При достижении электромагнитной волной противоположной поверхности происходит ее большее поглощение, что приводит к повышению коэффициента экранирования.
Технико-экономическая эффективность предлагаемого изобретения выразится в снижении толщины и уменьшении массогабаритных характеристик композиционного материала, что позволит повысить надежность работы электронных и электротехнических средств, обеспечить эффективную защиту биологических объектов за счет повышения магнитной проницаемости композиционного материала и, как следствие, коэффициента экранирования электромагнитных полей радиочастотного диапазона.
При объемной плотности нанокристаллов - (Fe, Si) или - Со (0,6÷1,4)·10-5 1/нм3 магнитная проницаемость композитов по сравнению с аморфным состоянием увеличивается в 2-3 раза и составляет от 90 до 135 ед.
название | год | авторы | номер документа |
---|---|---|---|
ЗАЩИТНЫЕ ПЕРЧАТКИ ДЛЯ ОПЕРАТОРОВ, РАБОТАЮЩИХ С ИСТОЧНИКОМ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ | 2010 |
|
RU2427296C1 |
ЗАЩИТНЫЕ ПЕРЧАТКИ ДЛЯ ОПЕРАТОРОВ, РАБОТАЮЩИХ С ИСТОЧНИКОМ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ | 2012 |
|
RU2481051C1 |
ЗАЩИТНЫЕ ПЕРЧАТКИ | 2013 |
|
RU2534070C1 |
ЗАЩИТНЫЙ ЖИЛЕТ ОТ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ | 2010 |
|
RU2426063C1 |
ЗАЩИТНЫЙ ЖИЛЕТ ОТ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ | 2012 |
|
RU2483661C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ЗАЩИТЫ ОТ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ | 2010 |
|
RU2430434C1 |
ЗАЩИТНЫЕ ПЕРЧАТКИ | 2014 |
|
RU2559555C1 |
КОСТЮМ БОЕВОЙ ОДЕЖДЫ СПАСАТЕЛЯ | 2014 |
|
RU2559556C1 |
ЗАЩИТНЫЙ КОСТЮМ СПАСАТЕЛЯ ДЛЯ РАБОТЫ ПРИ РАЗБОРЕ ЗАВАЛОВ | 2014 |
|
RU2564980C1 |
ЛЕГКИЙ ЗАЩИТНЫЙ КОСТЮМ СПАСАТЕЛЯ | 2014 |
|
RU2564979C1 |
Изобретение относится к средствам защиты от электромагнитного излучения и направлено на повышение эффективности защиты, например, оператора, что обеспечивается за счет того, что в защитном экране корпус выполнен в виде соединенных между собой вертикальной и горизонтальной поверхностей, между которыми расположен экранирующий элемент, выполненный в виде сотовой решетки. При этом, согласно изобретению, форма ячеек сотовой решетки представляет собой в сечении, перпендикулярном оси ячейки, либо правильный шестиугольник, либо шестиугольник с неравными ребрами: четыре попарно параллельных ребра и соединенных с ними два параллельных ребра меньшего размера, причем грани многогранников сотовой решетки, включающей два параллельных ребра меньшего размера, расположены параллельно вертикальной поверхности, а грани, содержащие четыре попарно параллельных ребра, расположены под углом к вертикальной и горизонтальной поверхностям. Кроме того, экранирующий элемент защитных экранов обработан композиционным материалом, состоящим из полимерной основы, в которой распределены частицы соединений - (Fe, Si) или - Со с нанокристаллической структурой объемной плотностью (0,6÷1,4)·10-5 1/нм3, при этом полимерная основа для фиксации положения частиц порошка с нанокристаллической структурой выполнена в виде чередующихся между собой элементов структуры, расположенных под углом 90° друг к другу, а каждый из элементов выполнен в виде расположенных в параллельных рядах частиц вытянутой формы, причем частицы, расположенные слева и справа от нее, сдвинуты на величину, не превышающую половины максимального размера частицы, при этом оптимальным является следующий диапазон значений объемной плотности нанокристаллов в аморфной матрице: больше 0,6·10-5 1/нм3, но менее 1,4·10-5 1/нм3. 3 ил.
Защитный экран от воздействия электромагнитных излучений, содержащий корпус и пластину из защитного материала, отличающийся тем, что корпус выполнен в виде соединенных между собой вертикальной и горизонтальной поверхностей, между которыми расположен экранирующий элемент, выполненный в виде сотовой решетки, при этом форма ячеек сотовой решетки представляет собой в сечении, перпендикулярном оси ячейки, либо правильный шестиугольник, либо шестиугольник с неравными ребрами: четыре попарно параллельных ребра и соединенных с ними два параллельных ребра меньшего размера, причем грани многогранников сотовой решетки, включающей два параллельных ребра меньшего размера расположены параллельно вертикальной поверхности, а грани, содержащие четыре попарно параллельных ребра, расположены под углом к вертикальной и горизонтальной поверхностям, а экранирующий элемент защитных экранов обработан композиционным материалом, состоящим из полимерной основы, в которой распределены частицы соединений - (Fe, Si) или - Со с нанокристаллической структурой объемной плотностью (0,6÷1,4)·10-5 1/нм3, при этом полимерная основа для фиксации положения частиц порошка с нанокристаллической структурой выполнена в виде чередующихся между собой элементов структуры, расположенных под углом 90° друг к другу, а каждый из элементов выполнен в виде расположенных в параллельных рядах частиц вытянутой формы, причем частицы, расположенные слева и справа от нее, сдвинуты на величину, не превышающую половины максимального размера частицы, при этом оптимальным является следующий диапазон значений объемной плотности нанокристаллов в аморфной матрице: больше 0,6·10-5 1/нм3, но менее 1,4·10-5 1/нм3.
Способ охраны выработки в слоистом горном массиве | 1978 |
|
SU768996A1 |
KR 100785910 B1, 17.12.2007 | |||
Пороговое устройство | 1983 |
|
SU1170420A2 |
JP 10093287 A, 10.04.1998 | |||
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ЗАЩИТЫ ОТ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ | 2006 |
|
RU2324989C2 |
КОМПОЗИЦИОННЫЙ РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ | 2008 |
|
RU2380867C1 |
JP 2007247036 A, 27.09.2007 | |||
CN 101203127 A, 18.06.2008 | |||
JP 11354973 A, 24.12.1999. |
Авторы
Даты
2012-01-10—Публикация
2010-09-10—Подача