ВОЛОКОННО-ОПТИЧЕСКИЙ ТЕРМОДАТЧИК Российский патент 2012 года по МПК G01K11/00 G02B6/26 

Описание патента на изобретение RU2441205C1

Изобретение относится к измерительной технике и может быть использовано в системах температурного/теплового контроля в качестве термореле, сигнализаторов в системах пожарной сигнализации предприятий, жилых помещений, железнодорожного и автомобильного транспорта; терморегуляторов в установках термостатирования объектов различного назначения, включая биологические; датчиков перегрева жидкости и пара в радиаторах водяного охлаждения, в масляных рубашках охлаждения трансформаторов, в теплообменниках, в паровых котлах; термодатчиков для контроля технологических процессов и в других областях техники. Устройство может применяться для дистанционного измерения температуры, в том числе в условиях повышенного уровня радио и электромагнитных помех.

Известны волоконно-оптические датчики температуры, содержащие осветительный и приемный световоды и термочувствительный, элемент на основе брэгговских решеток (патент CN №101253392 (A), G01D 5/353; G01D 5/38; G01K 11/32; G01L 9/00, 27.08.2008; патент US №2006146909 (А1), G01J 5/00, 06.07.2006; патент US №2001022804 (А1), G01K 5/52; G01K 11/32; G01K 5/00; G01K 11/00, 20.09.2001) и на основе резонансных систем (патент US №2003118075 (А1), G01K 11/32, G01K 11/00, 26.06.2003; патент RU №2161783 C2, G01K 11/32, 30.12.1998; патент RU №2110049 C1, G01K 11/32, G02B 6/00, 23.08.1996; патент RU №2082119 C1, G01K 11/32, 20.05.1994; патент US №6141098, G01B 009/02, 31.10.2000), в которых регистрируется фазовая модуляция света, возникающая при изменении температуры окружающей среды. Известен волоконно-оптический датчик (патент US 5641955, G01D 5/26, G01D 5/353, G01K 5/48, G01K 5/00, H01J 005/16, 24.06.1997), содержащий термочувствительные элементы из сплава с эффектом памяти формы, которые при нагреве вспоминают заданную им форму и оказывают механическое давление на оптическое волокно, которое измеряется с помощью интерферометра. Однако такие датчики конструктивно сложны, для измерения температуры требуется специализированная дорогостоящая аппаратура.

Волоконно-оптические датчики, принцип действия которых основан на амплитудной модуляции света, распространяющегося в волокне, являются более простыми и дешевыми.

Например, известны волоконно-оптические датчики температуры (патент US №5419636, G01K 5/00, G01K 5/52, 30.05.1995; патент JP №2009052964 (A), G01K 11/12, G01K 11/00, 12.03.2009), в которых участок волоконного световода со снятой оболочкой покрывают материалом с отличающимся коэффициентом теплового расширения. Изменение температуры окружающей среды приводит к микроизгибу на чувствительном участке световода и, как следствие, к изменению интенсивности света, проходящего через этот участок.

Известен волоконно-оптический термодатчик (патент СА №2671146 (A1), G01K 5/00, G01K 5/48, G01K 15/00, 26.06.2008), который содержит по крайней мере одно испускающее свет оптическое волокно и одно волокно, принимающее свет, и расположенный между ними растяжимый объект, который перекрывает испускаемый свет при изменении температуры объекта.

Недостатком этих датчиков является их большая тепловая инерция, ограничивающая быстродействие устройств.

Известен волоконно-оптический датчик температуры (патент RU №2256890 С1, G01K 11/32, 03.03.2004), который содержит осветительный и приемный световоды, первые концы которых подсоединены, соответственно, к источнику света и фотоприемнику, а вторые - к капсуле, в которой за счет отражения от внутрикапсульного зеркала осуществляется передача светового потока от осветительного световода к приемному световоду. Подсоединение осветительного и приемного световодов к капсуле осуществлено через направленный Y-образный волоконно-оптический разветвитель, общий ввод-вывод которого закреплен в капсуле напротив внутрикапсульного зеркала, которое выполнено на торце стержня, закрепленного своим противоположным концом на дне капсулы с зазором по отношению к внутренней боковой поверхности капсулы. Капсула и стержень выполнены из диэлектрических материалов, различающихся своими коэффициентами температурного линейного расширения.

Принцип действия датчика-прототипа основан на фиксации изменения оптической связи между осветительным и приемным световодами на участке «торец осветительного световода - внутрикапсульное зеркало - торец приемного световода». Эта связь меняется при изменении температуры в результате различного теплового расширения капсулы и выступающего внутрь капсулы ввода-вывода Y-образного волоконно-оптического разветвителя, приводя к изменению интенсивности выходного светового потока.

Данное изобретение является наиболее близким аналогом к заявляемому устройству, т.е. прототипом.

Недостатком устройства-прототипа является ограничение по использованию, в частности, точного измерения температуры, при относительно высоких скоростях изменения температуры окружающей среды, поскольку, во-первых, необходимо значительное время для нагрева/охлаждения капсулы и стержня из диэлектрических материалов, во-вторых, принципиально разная скорость их нагрева/охлаждения, что приводит к ошибкам в измерении температуры.

Кроме того, устройство-прототип требует сложной юстировки и согласования внутрикапсульного зеркала и общего ввода-вывода волоконно-оптического разветвителя.

Задачей заявляемого изобретения является увеличение быстродействия датчика за счет уменьшения размеров и массы термочувствительного элемента, а также упрощение устройства.

Кроме того, при реализации устройства достигается технический результат, заключающийся в уменьшении потерь при передаче отраженного светового потока в приемный световод и повышении чувствительности термодатчика за счет существенного изменения интенсивности возвращенного в приемный световод светового потока при малых изменениях температуры.

Данная задача решается созданием волоконно-оптического термодатчика, содержащего осветительный и приемный световоды, первые концы которых подсоединены, соответственно, к источнику света и фотоприемнику, а вторые - к направленному Y-образному волоконно-оптическому разветвителю, общий ввод-вывод которого снабжен термочувствительным элементом, имеющим зеркальную поверхность, за счет отражения от которой осуществляется передача светового потока от осветительного световода к приемному световоду, при этом термочувствительный элемент выполнен в виде миниатюрной тонкой непрозрачной шторки из материала с эффектом памяти формы, одним концом закрепленной на торце измерительного световода, соединенного с общим вводом-выводом разветвителя, а шторке задана обратимая память формы на изгиб таким образом, что в исходном состоянии (ниже температуры прямого мартенситного превращения в материале шторки) свободный конец шторки своей зеркальной стороной плотно прижат к торцу измерительного световода, полностью перекрывая светонаправляющую апертуру световода, а в состоянии выше температуры обратного мартенситного превращения в материале шторки отклонен на острый угол от плоскости торца измерительного световода.

Предлагаемое изобретение иллюстрируется схематическими, чертежами, на которых изображены:

Фиг.1 - волоконно-оптический термодатчик.

Фиг.2 - термочувствительный элемент из материала с ЭПФ.

Волоконно-оптический термодатчик (далее термодатчик) содержит (фиг.1) осветительный 1 и приемный 2 световоды, первые концы которых подсоединены, соответственно, к источнику света 3 и фотоприемнику 4, а вторые - к направленному Y-образному волоконно-оптическому разветвителю 5, при этом общий ввод-вывод разветвителя 5 соединен с одним торцом измерительного световода 6, на другом торце которого расположен термочувствительный элемент 7, имеющий зеркальную поверхность, обращенную к торцу световода 6, за счет отражения от которой осуществляется передача светового потока от осветительною световода 1 к приемному световоду 2. Световод 6 может иметь значительную длину для обеспечения дистанционного измерения температуры.

Термочувствительный элемент 7 выполнен в виде миниатюрной тонкой непрозрачной шторки из материала с эффектом памяти формы (ЭПФ), например из сплава Ti50Ni25Cu25 (ат.%), изготовленного методом сверхбыстрой закалки из расплава в виде ленты толщиной 10-50 мкм и шириной 1-10 мм. Шторка 7 одним концом закреплена на торце световода 6, например термостойким (до 1000°С) клеем ТК-1000, а другой ее конец свободен (фиг.2). Шторка 7 может крепиться как непосредственно на плоскости торца световода 6 (фиг.2а, б), так и на его боковой поверхности (фиг.2в, г).

С помощью специального метода термомеханической обработки шторке 7 задана обратимая память формы на изгиб таким образом, что в исходном состоянии (ниже температуры прямого мартенситного превращения Мк в материале шторки 7) свободный конец шторки 7 своей зеркальной стороной плотно прижат к торцу световода 6, полностью перекрывая светонаправляющую апертуру световода, а в состоянии выше температуры обратного мартенситного превращения Ак в материале шторки отклонен на острый угол от плоскости торца световода 6. Величина угла рассчитывается или выбирается экспериментально в зависимости от размеров поперечного сечения световода 6 и его светонаправляющей части, например диаметров волокна и его сердцевины, а также от размеров шторки 7 и места ее крепления таким образом, чтобы величина светового потока, отраженного от зеркальной поверхности шторки 7 и попавшего в световод 6, была близка к нулю.

Шторка 7, например, размером 500×300×10 мкм изготовлена из ленты или пленки сплава с ЭПФ одним из известных способов: механической вырубки (вырезки), лазерной резки, фотолитографии.

Метод придания обратимой памяти формы шторке 7 может быть реализован, например, следующим образом. Отрезок ленты из аморфного быстрозакаленного сплава TiNiCu изгибается вокруг цилиндрической оправки, фиксируется в этом положении и отжигается в печи для кристаллизации сплава, например, при температуре 500°С в течение 3-30 минут. Диаметр оправки и режим кристаллизационного отжига выбираются таким образом, что после охлаждения и освобождения шторки 7 она способна совершать обратимые угловые перемещения до 90 градусов при циклическом изменении температуры в интервале мартенситного превращения.

Другой способ придания обратимой памяти формы заключается в следующем. На поверхность предварительно растянутой (до величины относительной деформации, не превышающей величину максимального мартенситного сдвига) ленты или пленки с ЭПФ наносится (например, гальваническим методом или вакуумным напылением) металлический (например, никель или платина) слой. При нагреве ленты этот слой будет препятствовать восстановлению за счет ЭПФ исходной длины ленты, что приведет к изгибной деформации такого композита.

Зеркальная поверхность шторки обеспечивается, например, изготовлением ее из аморфного быстрозакаленного сплава на основе TiNiCu с кристаллизационным отжигом в вакуумной печи или нанесением тонкого металлического слоя, например алюминия или серебра, методом вакуумного напыления.

В качестве источника света 3 может быть применен лазерный модуль ДМПО131-14 с кабельным многомодовым волоконным выходом, оканчивающимся оптическим разъемом типа FC/PC, а в качестве фотоприемника 4 - приемный модуль ДФД70-ММ, в состав которого входит InGaAs PIN фотодиод и оптический соединитель типа FC/PC.

Световоды 1 и 2 могут представлять собой многомодовые оптические волокна «кварц/кварц» типа ММ ⌀50/125 мкм с оптическими разъемами типа FC/PC, a разветвитель 5 - стандартный волоконно-оптический ответвитель 1×2 (50×50%) типа ММ ⌀50/125 мкм. При этом световоды 1 и 2, разветвитель 5 и один конец световода 6 снабжены оптическими разъемами типа FC/PC, второй конец световода 6 имеет отполированный торец или заделан в керамическую вставку, например, диаметром 1 мм.

Для работы термодатчика в особых условиях термочувствительный элемент 7 может быть снабжен защитным тонкостенным металлическим колпачком, например, диаметром 1,2 мм и длиной 2 мм из меди. Защитный колпачок крепится герметично, например, с помощью термостойкого клея, на конце световода 6, предотвращая внешнее механическое воздействие на шторку. В то же время он эффективно передает тепло из окружающей среды на шторку, обеспечивая работу термодатчика как в газовой и твердой, так и в жидкой среде.

Заявляемый волоконно-оптический термодатчик работает следующим образом.

В исходном состоянии при температуре ниже Мк свободный конец шторки 7 прижат к торцу световода 6 (фиг.2а, в), при этом оптическое излучение от источника света 3, пройдя световод 1, разветвитель 5 и световод 6, попадает на зеркальную поверхность шторки 7 (фиг.1). Свет, отразившийся от поверхности шторки 7, вводится назад в световод 6, и часть излучения, пройдя световод 2, попадает на фотоприемник 4, на выходе которого световой поток преобразуется в электрический сигнал. Увеличение температуры среды, в которой находится термодатчик, приводит к тому, что в материале шторки 7 начинает происходить структурное фазовое превращение мартенситного типа, сопровождающееся изменением формы шторки 7 за счет реализации ЭПФ. В соответствии с предварительно заданной формой шторка 7 начинает изгибаться, увеличивая угол отклонения от плоскости световода 6 с ростом температуры, при этом часть светового потока, отраженного от зеркальной поверхности шторки 7, не попадает в световод 6 и на фотоприемник 4. В результате этого происходит снижение интенсивности сигнала на выходе фотоприемника 4, достигающего своего минимального значения после достижения температуры обратного мартенситного превращения Ак в материале шторки 7, когда шторка 7 оказывается в конечном состоянии (фиг.2б, г). При охлаждении до температуры Мк шторка 7 возвращается в исходное состояние за счет реализации обратимого ЭПФ, прижимаясь зеркальной поверхностью к торцу световода 6, и интенсивность выходного сигнала на фотоприемнике 4 вновь возрастает до максимальной величины.

Плотное прижатие шторки 7 своей зеркальной поверхностью к торцу измерительного световода 6 обеспечивает максимальный возврат отраженного светового потока назад в световод 6, тем самым повышая чувствительность устройства за счет увеличения соотношения сигнал/шум. При этом отклонение шторки 7 на небольшой угол от плоскости торца световода 7 (при малых изменениях температуры) приводит к существенному изменению интенсивности возвращенного в световод 6 светового потока и, соответственно, интенсивности выходного сигнала на фотоприемнике 4, например, при использовании многомодового оптического волокна типа ММ ⌀50/125 мкм в качестве измерительного световода отклонение шторки 7 от плоскости торца световода 6 даже на угол 1-5 градусов может привести к уменьшению интенсивности возвращенного в световод 6 светового потока на 60-90%. Таким образом, это позволяет существенно повысить чувствительность термодатчика.

Устройство может использоваться как для измерения температуры, так и в качестве порогового температурного датчика. В первом случае для изготовления шторки 7 предпочтительно выбирается безгистерезисный материал с ЭПФ, обладающий большим температурным интервалом мартенситного превращения, а во втором случае - главным образом материал с ЭПФ с максимально узким интервалом мартенситного превращения.

Температурный диапазон работы термодатчика определяется критическими температурами фазового мартенситного превращения в материале с ЭПФ и может варьироваться в широком интервале (например, от -150 до +400°С) за счет изменения композиции сплава.

Заявляемый волоконно-оптический термодатчик обеспечивает увеличение быстродействия датчика по сравнению с аналогами за счет значительного уменьшения размеров и массы термочувствительного элемента, а также позволяет существенно упростить устройство.

Кроме того, заявляемое устройство обеспечивает уменьшение потерь при вводе отраженного от шторки светового потока в измерительный световод по сравнению с известными устройствами, тем самым повышая чувствительность устройства.

Кроме того, заявляемое изобретение позволяет повысить чувствительность термодатчика за счет существенного изменения интенсивности возвращенного в измерительный световод светового потока при малых углах отклонения шторки от плоскости торца измерительного световода, т.е. при малых изменениях температуры.

При этом термодатчик оптически пассивен и обладает повышенной стойкостью к электромагнитным шумам.

Похожие патенты RU2441205C1

название год авторы номер документа
ВОЛОКОННО-ОПТИЧЕСКИЙ ДАТЧИК ТЕМПЕРАТУРЫ 2004
  • Мешковский И.К.
  • Попков О.С.
  • Вознесенская А.О.
RU2256890C1
ВОЛОКОННО-ОПТИЧЕСКИЙ ДАТЧИК ТЕМПЕРАТУРЫ 1991
  • Дворников Геннадий Дмитриевич
RU2008630C1
ВОЛОКОННО-ОПТИЧЕСКИЙ ТЕРМОМЕТР 2004
  • Егоров Федор Андреевич
  • Потапов Владимир Тимофеевич
  • Неугодников Алексей Павлович
  • Егоров Сергей Андреевич
  • Поспелов Вадим Игоревич
RU2272259C1
Способ определения линейных перемещений объектов с плоской зеркально-отражающей поверхностью 1989
  • Малков Яков Вениаминович
  • Каленик Геннадий Павлович
  • Радул Александр Макарович
  • Бурков Валерий Дмитриевич
  • Караштин Владимир Михайлович
  • Катович Валерий Николаевич
  • Кузнецова Вера Ивановна
SU1774233A1
Способ исследования микрообъектов и ближнепольный оптический микроскоп для его реализации 2016
  • Жаботинский Владимир Александрович
  • Лускинович Петр Николаевич
  • Максимов Сергей Александрович
RU2643677C1
СПОСОБ ИЗМЕРЕНИЯ НЕСООСНОСТИ ОПТИЧЕСКОГО ВОЛОКНА В СОЕДИНИТЕЛЬНОМ НАКОНЕЧНИКЕ 1990
  • Кириллов В.А.[Ua]
  • Антонов Б.К.[Ua]
  • Шавыкин В.Г.[Ua]
  • Пономаренко А.Д.[Ua]
  • Харин А.С.[Ua]
RU2028578C1
Устройство для измерения температуры 1979
  • Моршнев Сергей Константинович
  • Рябов Александр Сергеевич
  • Францессон Андрей Владимирович
SU859838A1
Устройство для измерения температуры 1980
  • Золин В.Ф.
  • Яковлев Ю.О.
SU902583A1
СЕЙСМОПРИЕМНОЕ УСТРОЙСТВО 1999
  • Жеребцов В.Д.
  • Петров А.Н.
RU2156478C1
УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ ИЗНОСА ТРУЩИХСЯ ПОВЕРХНОСТЕЙ 2013
  • Карлов Сергей Петрович
  • Покусаев Борис Григорьевич
  • Некрасов Дмитрий Анатольевич
RU2548060C1

Иллюстрации к изобретению RU 2 441 205 C1

Реферат патента 2012 года ВОЛОКОННО-ОПТИЧЕСКИЙ ТЕРМОДАТЧИК

Изобретение может быть использовано в системах в качестве термореле, сигнализаторов в системах пожарной сигнализации; терморегуляторов в установках термостатирования или термодатчиков. Термодатчик содержит осветительный и приемный световоды, первые концы которых подсоединены к источнику света и фотоприемнику, а вторые - к направленному Y-образному волоконно-оптическому разветвителю, общий ввод-вывод которого снабжен термочувствительным элементом, имеющим зеркальную поверхность и выполненным в виде непрозрачной шторки из материала с эффектом памяти формы, одним концом закрепленной на торце измерительного световода. Шторке задана обратимая память формы на изгиб. В исходном состоянии, ниже температуры прямого мартенситного превращения, свободный конец шторки зеркальной стороной плотно прижат к торцу измерительного световода, полностью перекрывая апертуру световода. В состоянии выше температуры обратного мартенситного превращения свободный конец шторки отклонен на острый угол от плоскости торца измерительного световода. Технический результат - увеличение быстродействия за счет уменьшения размеров и массы термочувствительного элемента, упрощение, а так же уменьшение потерь при передаче отраженного светового потока в приемный световод и повышение чувствительности за счет существенного изменения интенсивности при малых изменениях температуры. 5 ил.

Формула изобретения RU 2 441 205 C1

Волоконно-оптический термодатчик, содержащий осветительный и приемный световоды, первые концы которых подсоединены соответственно к источнику света и фотоприемнику, а вторые - к направленному Y-образному волоконно-оптическому разветвителю, общий ввод-вывод которого снабжен термочувствительным элементом, имеющим зеркальную поверхность, за счет отражения от которой осуществляется передача светового потока от осветительного световода к приемному световоду, отличающийся тем, что термочувствительный элемент выполнен в виде непрозрачной шторки из материала с эффектом памяти формы, одним концом закрепленной на торце измерительного световода, соединенного с общим вводом-выводом разветвителя, при этом шторке задана обратимая память формы на изгиб таким образом, что в исходном состоянии, ниже температуры прямого мартенситного превращения в материале шторки, свободный конец шторки своей зеркальной стороной плотно прижат к торцу измерительного световода, полностью перекрывая светонаправляющую апертуру световода, а в состоянии выше температуры обратного мартенситного превращения в материале шторки отклонен на острый угол от плоскости торца измерительного световода.

Документы, цитированные в отчете о поиске Патент 2012 года RU2441205C1

Устройство для контроля перегрева подшипников качения 1991
  • Чечуевский Вячеслав Петрович
SU1779972A1
JP 61289307 A, 19.12.1986
СПОСОБ ФОРМИРОВАНИЯ СВЕТОВОГО ПОТОКА НА ВНЕШНЕМ ЭКРАНЕ ДЛЯ ПОЛНОЦВЕТНОЙ СИСТЕМЫ ОТОБРАЖЕНИЯ ВИДЕОИНФОРМАЦИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Бурчак Г.Ф.
  • Червонобродов С.П.
  • Шешин Е.П.
RU2265964C2
JP 1189529 A, 28.07.1989
JP 3070088 A, 26.03.1991
JP 0062299730 A, 26.12.1987
JP 9243415 A, 19.09.1997.

RU 2 441 205 C1

Авторы

Шеляков Александр Васильевич

Ситников Николай Николаевич

Менушенков Алексей Павлович

Корнеев Александр Александрович

Даты

2012-01-27Публикация

2010-05-24Подача