СПОСОБ КОНЦЕНТРАЦИИ СОЛНЕЧНОЙ ЭНЕРГИИ Российский патент 2012 года по МПК F24J2/06 

Описание патента на изобретение RU2442082C2

Изобретение относится к гелиотехнике, в частности к концентраторам солнечной энергии с высокой степенью концентрации, и может найти свое применение в получении высоких температур и передаче энергии на расстояние без преобразования ее в другие виды энергии.

Известны различные способы концентрации солнечной энергии: отражающие плоские зеркала - поле гелиостатов, вогнутые или параболические зеркала в виде сферических зеркал и зеркальных параболоидов и преломляющие в виде собирательных линз или линз Френеля. Все эти типы концентрирующих систем имеют основной недостаток в виде потерь солнечной энергии при ее преобразовании в другие виды энергий, а соответственно низкий КПД.

Наиболее близким по технической сущности и достигаемому результату является «Способ концентрации солнечной энергии и устройство для его осуществления» по патенту №2342606 RU, где световой поток солнечной энергии, сконцентрированный у фокусной оси параболоцилиндрического концентратора первой ступени, направляет этот световой поток сразу под критическим углом к параболоцилиндрическому световоду-концентратору, изготовленному из оптически прозрачных материалов. Свет на границе раздела сред с разной плотностью, падая на параболообразующую поверхность световода-концентратора, проходит параллельно оси фокусов, учитывая оптические свойства параболы. Световой поток суммируется по всей длине параболоцилиндрического световода-концентратора.

Недостатком такого способа является отсутствие четкой передачи световой энергии на параболообразующую поверхность световода-концентратора, при этом неизбежны потери энергии по длине световода-концентратора.

Целью предлагаемого изобретения является устранение этих недостатков и обеспечение практического использования световода-концентратора для получения высокой степени концентрации солнечной энергии и создания условий для передачи ее без преобразования в другой вид энергии к месту потребления.

Поставленная цель достигается тем, что вдоль фокусной оси параболоцилиндрического концентратора первой ступени размещается световод-концентратор круглого, эллиптического или другого сечения из прозрачного диэлектрика (стекло, акриловое стекло, и. т.д.), размеры которого зависят от ширины фокальной полосы, образованной у фокусной оси параболоцилиндрического концентратора первой ступени.

Концентрированное солнечное излучение, идущее от параболоцилиндрического концентратора первой ступени, падает на границу раздела двух не поглощающих (прозрачных) сред - стекло-воздух с показателями преломления n1 и n2. Преломление света определяется двумя закономерностями: преломленный луч лежит в плоскости, проходящей через падающий луч, и нормаль (перпендикуляр) поверхности раздела. Углы падения связаны законом преломления Снеллиуса n1Sina=n2Sinb. Суммарная энергия отраженного и преломленного луча равна энергии падающего луча, соотношение интенсивностей этих лучей зависит от показателей преломления и угла падения падающего луча, согласно формуле Френеля. Если пучок света падает от концентратора первой ступени на прозрачный световод под большим углом к нормали, то энергия луча будет максимально отраженной. Энергия же преломленного луча становится больше, когда угол падения с нормалью будет минимальным. В соответствии с этими условиями требуется, чтобы световой поток, концентрированный у фокуса параболоцилиндрического концентратора первой ступени, должен падать на световод-концентратор, расположенный так, чтобы он оказался во внутренней полости световода-концентратора под предельным углом. Таким образом, создаются условия для полного внутреннего отражения этого светового потока. При этих условиях световой поток не сможет покинуть внутреннюю полость световода-концентратора и пойдет в нужном направлении. В этом случае, энергия солнечного излучения, попавшая во внутрь световода-концентратора, не будет преобразовываться в другой вид энергии, а будет направляться по световоду к приемнику по назначению. Чтобы создать такие условия, на первом этапе, по всей длине световода-концентратора, на его поверхности стороны, обращенной к параболоцилиндрическому концентратору первой ступени, устанавливаются прозрачные плоские пластины или зеркало, на равном расстоянии друг от друга под углом к световоду-концентратору. Угол наклона пластин к оси световода-концентратора должен быть таким, чтобы пучок концентрированного света, идущего от параболоцилиндрического концентратора первой ступени, отражался в среде воздух - стекло под углом к нормали от пластины более 42-43°. В таком случае пластины обеспечивают оптимально-максимальное отражение световой энергии. На втором этапе, отраженный от пластины световой пучок падает под таким углом на границу раздела сред воздух-стекло, чтобы отраженная световая энергия была минимальной и максимальной для преломленной световой энергии, угол падающего пучка световой энергии с нормалью должен быть меньше 42-43°. Для обеспечения этого условия на поверхности световода-концентратора, обращенной к пучку света, идущего от концентратора первой ступени, образуются наклонные поверхности, выполненные в виде призмы, изготовленной из того же прозрачного материала, что и сам световод-концентратор. Нижняя грань призмы плотно уложена или отлита вместе со световодом-концентратором. Наклонная поверхность призмы, которая является границей раздела, среда воздух-стекло, ее угол наклона определяется теперь углом падения пучка света, идущего от пластины, установленной на световоде-концентраторе, и нормалью к наклонной поверхности, образованной на световоде-концентраторе, и этот угол должен быть не более 42-43°, в этом случае максимальная энергия солнечного излучения будет оставаться в преломленном пучке света. На третьем этапе, преломленный пучок света выходит из стекла и получает направление, параллельное пучку света, идущему от наклонной пластины на наклонную поверхность световода-концентратора (это одно из условий принципов Ферми). Таким образом, пучок света оказывается внутри световода-концентратора и падает на его противоположную сторону, на границу раздела среда стекло-воздух.

Для пучка лучей, распространяющихся из стекла в воздух, существует угол полного внутреннего отражения, лучи не будут проходить через границу сред, а будут полностью отражаться внутри среды падения. В результате, весь пучок света остается внутри световода-концентратора. Подобное будет происходить и с пучками света, отраженными от всех плоских пластин, установленных по длине световода-концентратора. Таким образом, суммируется и изменяет направление весь световой поток, идущий от концентратора первой ступени.

На фиг.1 представлен фрагмент продольного разреза световода-концентратора.

На фиг.2 - поперечное сечение световода-концентратора.

Параболоцилиндрический концентратор первой ступени на чертежах не показан, а показаны лучи, идущие от него.

Световод-концентратор 1 размещается у фокуса параболоцилиндрического концентратора первой ступени (на чертеже не показан). Пучок света 2, идущий от параболоцилиндрического концентратора первой ступени, падает на наклонную плоскую отражающую пластину 3 под углом 65-70°, среда воздух-стекло. Отраженный пучок света 2 падает на наклонную поверхность призмы 4 под углом 30-35° к нормали, среда стекло-воздух, преломляется в стекле, где n2=1,5, изменяется только оптический отрезок пути в наклонной призме, выходит, преломляясь в воздухе, n1, приблизительно равный 1.0, и получает параллельное направление отраженным лучам 2 от наклонной пластины 3. Таким образом, световой пучок 2 попал во внутреннюю полость световода-концентратора 1, которая ограничена стеклом по всей длине световода-концентратора. При этом угол падения пучка света 2 на тыльную сторону 5 световода-концентратора 1 составляет 60-65°. Для таких лучей существует угол полного внутреннего отражения, лучи не будут проходить через границу сред и будут полностью отражаться внутри среды падения. В результате весь пучок света остается внутри световода-концентратора 1, так как наклонные пластины 3 установлены по всей длине световода-концентратора 1, вся солнечная энергия будет суммироваться со всех наклонных пластин 3 и получит измененное направление светового потока площадью сечения, равной сечению световода-концентратора, необходимого для последующей передачи на расстояние и преобразования в другие виды энергии.

Концентрация солнечной энергии происходит следующим образом: от параболоцилиндрического концентратора первой ступени с системой слежения за солнцем солнечная энергия собирается у фокусной оси в виде фокусной полосы. У фокусной полосы размещен диэлектрический прозрачный световод-концентратор 1. Установленные на световоде-концентраторе, на равном друг от друга расстоянии наклонные пластины 3 принимают идущий световой поток от концентратора солнечной энергии первой ступени и отражают их на наклонную плоскость призм 4, расположенных между наклонными плоскостями под углом 30-35° к нормали. Падая на наклонную поверхность стекла призмы 4 под углом 30-35°, свет преломляется на угол, соответствующий коэффициенту преломления стекла n1=1,5, при этом оптический отрезок пути, проходящий светом, будет разный, что никак не скажется на преломлении света, учитывая его скорость. При выходе из стекла свет преломляется в воздухе с коэффициентом преломления п2=1.0 и падает на противоположную сторону световода-концентратора под углом 60-65°, что значительно превышает угол полного внутреннего отражения, среда стекло-воздух. Таким образом, солнечная энергия не будет проходить через границу сред, а будет полностью оставаться внутри световода-концентратора 1. Солнечная энергия суммируется по всей длине световода-концентратора 1, при этом площадь сечения светового потока будет равна площади сечения световода-концентратора 1.

Если на выходе светового потока из световода-концентратора 1 установить двояковыпуклую линзу, всю солнечную энергию, собранную параболоцилиндрическим концентратором первой ступени, можно сконцентрировать в точку диаметром 1.5-2.0 мм и направить ее по оптическому кабелю к приемнику для преобразования ее в другой вид энергии.

Похожие патенты RU2442082C2

название год авторы номер документа
СПОСОБ КОНЦЕНТРАЦИИ СОЛНЕЧНОЙ ЭНЕРГИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Рылов Юлий Меркурьевич
RU2342606C2
АБСОРБЕР ПАРАБОЛОЦИЛИНДРИЧЕСКОГО КОНЦЕНТРАТОРА СОЛНЕЧНОЙ ЭНЕРГИИ С СИСТЕМОЙ СЛЕЖЕНИЯ ЗА СОЛНЦЕМ 2009
  • Рылов Юлий Меркурьевич
RU2430311C2
ПАРАБОЛОЦИЛИНДРИЧЕСКИЙ КОНЦЕНТРАТОР СОЛНЕЧНОЙ ЭНЕРГИИ С АБСОРБЕРОМ И СИСТЕМОЙ СЛЕЖЕНИЯ ЗА СОЛНЦЕМ 2005
  • Рылов Юлий Меркурьевич
RU2300058C2
ПЛАНАРНАЯ ГРАДИЕНТНАЯ ОПТИЧЕСКАЯ СИСТЕМА (ВАРИАНТЫ) 2019
  • Семенов Сергей Львович
  • Ложенко Александр Сергеевич
RU2720482C1
ГЕЛИОУСТАНОВКА 2001
  • Анисимова С.С.
  • Свиридов К.Н.
  • Шадрин В.И.
RU2210038C2
СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2001
RU2227877C2
Солнечный модуль с концентратором (варианты) 2014
  • Стребков Дмитрий Семенович
RU2608797C2
СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ (ВАРИАНТЫ) 1998
  • Стребков Д.С.
  • Безруких П.П.
  • Тверьянович Э.В.
  • Иродионов А.Е.
RU2133415C1
УСТРОЙСТВО ПЕРЕНАПРАВЛЕНИЯ СВЕТА 2012
  • Гомманс Хендрикус Хюбертус Петрус
RU2617410C2
СОЛНЕЧНЫЙ МОДУЛЬ С КОНЦЕНТРАТОРОМ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ (ВАРИАНТЫ) 2011
  • Розанцева Дарья Дмитриевна
  • Розанцев Михаил Валентинович
  • Стребков Дмитрий Семенович
  • Стребкова Анастасия Дмитриевна
RU2503895C2

Иллюстрации к изобретению RU 2 442 082 C2

Реферат патента 2012 года СПОСОБ КОНЦЕНТРАЦИИ СОЛНЕЧНОЙ ЭНЕРГИИ

Изобретение относится к гелиотехнике, в частности к концентраторам солнечной энергии с высокой степенью концентрации, и может найти свое применение в получении высоких температур и передаче энергии на расстояние без преобразования ее в другие виды энергии. Способ концентрации солнечной энергии включает отражение потока солнечной энергии и концентрацию его у теплоприемника. Концентрированная солнечная энергия от концентратора первой ступени падает на световод-концентратор круглого или эллиптического сечений, выполненного из диэлектрического не поглощающего (прозрачного) материала, на котором со стороны падающей солнечной энергии по всей длине установлены на одинаковом расстоянии друг от друга наклонные плоские отражающие пластины, прозрачные или зеркальные, поток солнечной энергии от концентратора первой ступени, падая на наклонные плоские отражающие пластины, прозрачные или зеркальные, среда воздух-стекло, под углом 65-70° к нормали, отражается от нее и падает на наклонную поверхность призм, установленных под углом 30-35° к нормали, далее, среда стекло-воздух, преломляется в стекле и входит во внутреннюю полость световода-концентратора, ограниченную со всех сторон стеклом в продольном направлении, где получает направление, параллельное отраженным лучам от наклонной плоской отражающей пластины, прозрачной или зеркальной, при этом угол падения лучей на противоположную поверхность световода-концентратора составляет 60-65° с нормалью, для таких лучей, как среда стекло-воздух, существует угол полного внутреннего отражения, лучи не будут проходить через границу сред, а будут оставаться внутри световода-концентратора, солнечная энергия, идущая от концентратора первой ступени, будет суммироваться со всех наклонных плоских отражающих пластин, прозрачных или зеркальных, попадать внутрь световода-концентратора и получать измененное направление солнечной энергии вдоль оси световода-концентратора, распространяясь по сечению, равному сечению световода-концентратора. Установив на выходе в торце световода-концентратора двояковыпуклую линзу, солнечная энергия, собранная параболоцилиндрическим концентратором, концентрируется в конечном результате в точку диаметром 1-2 мм, что позволяет направить ее по оптическому кабелю к устройству преобразования в другой вид энергии. Изобретение должно обеспечить получение высокой степени концентрации солнечной энергии и создание условий для передачи ее без преобразования в другой вид энергии к месту потребления. 2 ил.

Формула изобретения RU 2 442 082 C2

Способ концентрации солнечной энергии, включающий отражение потока солнечной энергии и концентрацию его у теплоприемника, отличающийся тем, что концентрированная солнечная энергия от концентратора первой ступени падает на световод-концентратор круглого или эллиптического сечения, выполненный из диэлектрического непоглощающего (прозрачного) материала, на котором со стороны падающей солнечной энергии по всей длине установлены на одинаковом расстоянии друг от друга наклонные плоские отражающие пластины, прозрачные или зеркальные, поток солнечной энергии от концентратора первой ступени, падая на наклонные плоские отражающие пластины, прозрачные или зеркальные, среда воздух-стекло, под углом 65-70° к нормали, отражается от нее и падает на наклонную поверхность призм, установленных под углом 30-35° к нормали, далее среда стекло-воздух преломляется в стекле и входит во внутреннюю полость световода-концентратора, ограниченную со всех сторон стеклом в продольном направлении, где получает направление, параллельное отраженным лучам от наклонной плоской отражающей пластины, прозрачной или зеркальной, при этом угол падения лучей на противоположную поверхность световода-концентратора составляет 60-65° с нормалью, для таких лучей, как среда стекло-воздух, существует угол полного внутреннего отражения, лучи не будут проходить через границу сред, а будут оставаться внутри световода-концентратора, солнечная энергия, идущая от концентратора первой ступени, будет суммироваться со всех наклонных плоских отражающих пластин, прозрачных или зеркальных, попадать внутрь световода-концентратора и получать измененное направление солнечной энергии вдоль оси световода-концентратора, распространяясь по сечению, равному сечению световода-концентратора.

Документы, цитированные в отчете о поиске Патент 2012 года RU2442082C2

СПОСОБ КОНЦЕНТРАЦИИ СОЛНЕЧНОЙ ЭНЕРГИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Рылов Юлий Меркурьевич
RU2342606C2
ПАРАБОЛОЦИЛИНДРИЧЕСКИЙ КОНЦЕНТРАТОР СОЛНЕЧНОЙ ЭНЕРГИИ С АБСОРБЕРОМ И СИСТЕМОЙ СЛЕЖЕНИЯ ЗА СОЛНЦЕМ 2005
  • Рылов Юлий Меркурьевич
RU2300058C2
СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ (ВАРИАНТЫ) 1998
  • Стребков Д.С.
  • Безруких П.П.
  • Тверьянович Э.В.
  • Иродионов А.Е.
RU2133415C1
СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ С КОНЦЕНТРАТОРОМ 1998
  • Стребков Д.С.
  • Тверьянович Э.В.
  • Артемов А.А.
  • Берсенев М.А.
RU2135909C1
US 2006130826 А1, 22.06.2006.

RU 2 442 082 C2

Авторы

Рылов Юлий Меркурьевич

Даты

2012-02-10Публикация

2009-07-13Подача