УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ ПРОВЕРЯЕМЫХ ОБЪЕКТОВ ПОСРЕДСТВОМ ЭЛЕКТРОМАГНИТНЫХ ВОЛН, ПРЕЖДЕ ВСЕГО, ДЛЯ КОНТРОЛЯ ПАССАЖИРОВ НА НАЛИЧИЕ ПОДОЗРИТЕЛЬНЫХ ПРЕДМЕТОВ Российский патент 2012 года по МПК G01S13/90 

Описание патента на изобретение RU2442187C2

Изобретение относится к устройству для формирования изображения проверяемых объектов посредством электромагнитных волн, со следующими признаками:

- антенна (1), которая излучает электромагнитные волны, прежде всего миллиметровые волны,

- средства для пространственной фокусировки излученных волн, и

- средства для манипуляции волнами в точке (5) точной фокусировки таким образом, что эта точка (5) служит в качестве подвижной виртуальной антенны для SAR-анализа,

при этом средства для пространственной фокусировки содержат установленный с возможностью вращения, фокусирующий или дефокусирующий, квазиоптический элемент, а средства для манипуляции волнами в точке (5) точной фокусировки содержат рефлектор (4),

В образующем уровень техники, описанном в немецкой патентной заявке 102005042463 устройстве подобного типа для контроля пассажиров или предметов багажа (далее называемых проверяемые объекты) проводится сканирование проверяемых объектов миллиметровыми волнами на предмет наличия скрытых опасных предметов (оружия, взрывчатых веществ) для того, чтобы обнаружить подозрительные предметы. При этом проверяемый объект последовательно облучается миллиметровыми волнами по его окружности, рассеянные волны принимаются и анализируются по SAR-принципу для наглядного представления проверяемых объектов.

Описанное в DE 102005042463 устройство позволяет применять двухмерный SAR-способ, который обеспечивает высокое разрешение как в направлении X, так и в направлении Y. За счет использования подвижных виртуальных антенн можно реализовать SAR-способ без необходимости сложных устройств управления антенной.

В основу изобретения положена задача улучшения устройства подобного типа таким образом, чтобы обеспечить улучшенное разрешение при меньшем искажении с меньшими аппаратными затратами.

Для решения этой задачи квазиоптический, фокусирующий или дефокусирующий элемент и рефлектор установлены с возможностью вращения на общей поворотной оси с равной угловой скоростью. Эта конструкция обеспечивает увеличенный угол открытия электромагнитного излучения. Это обеспечивает как увеличение зоны сканирования проверяемого объекта, так и увеличение апертуры виртуальной антенны для SAR-анализа. Расстояние между поворотной осью фокусирующего или дефокусирующего элемента и виртуальной антенны может быть выполнено максимально большим для получения большой зоны сканирования на проверяемом объекте.

Зависимые пункты формулы содержат предпочтительные, так как они являются особо преимущественными, варианты осуществления предлагаемого устройства.

Расположение квазиоптического, фокусирующего или дефокусирующего элемента и рефлектора в общем конструктивном элементе с возможностью вращения по п.2 формулы является конструктивно преимущественным.

За счет выполнения рефлектора фокусирующим или дефокусирующим электромагнитные волны получают по типу телескопа два фокусирующих или дефокусирующих элемента. Это позволяет не имеющее искажений формирование перемещающегося виртуального источника.

Выполнение как квазиоптического элемента, так и рефлектора фокусирующими дает компактную, подобную телескопу конструкцию.

Предпочтительно, квазиоптический элемент и рефлектор выполнены в виде зеркала. Максимально простое в управлении анализируемое перемещение виртуальной антенны получают, если согласно п.6 формулы изобретения квазиоптический элемент и рефлектор выполнены и расположены таким образом, что падающий на квазиоптический элемент центральный луч проходит параллельно центральному лучу, который выходит из рефлектора.

Далее изобретение со ссылкой на два примера осуществления поясняется более подробно.

Фигура 1 показывает в виде принципиальной схемы работу устройства,

фигура 2 показывает вид сзади,

фигура 3 показывает вид спереди устройства с Z-образным прохождением лучей,

фигура 4 показывает прохождение лучей в сечении,

фигура 5 показывает другое устройство с U-образным прохождением лучей,

фигура 6 показывает в сечении прохождение лучей этого устройства.

Каждое из показанных на фигурах устройств является частью проверяющего устройства, которое служит для контроля авиапассажиров в аэропорту. С помощью проверяющего устройства при регистрации авиапассажиры проверяются на наличие подозрительных предметов, таких как оружие или взрывчатые вещества. Используемые для облучения проверяемых объектов электромагнитные волны имеют частоту от 1 ГГц до 10 ТГц. Предпочтительно, используются миллиметровые волны с частотой от 30 ГГц до 300 ГГц. Для приема отраженных волн могут использоваться либо сами антенны-передатчики, либо отдельные антенны-приемники.

Предпочтительно, проверяющее устройство содержит платформу, на которой во время проведения контроля находится проверяемый объект, например авиапассажир. Согласно одной форме осуществления системы приема-передачи вращаются вокруг неподвижно стоящего проверяемого объекта, чтобы последовательно просветить его по его окружности миллиметровыми волнами. В качестве альтернативы, также можно осуществлять вращение самого проверяемого объекта на платформе перед стационарно расположенной системой приема-передачи.

Кроме того, проверяющее устройство оснащено анализирующей системой с соответствующей вычислительной мощностью, которая анализирует принятые, рассеиваемые проверяемым объектом волны по SAR-принципу для получения наглядного изображения проверяемого объекта. Созданные изображения показываются оператору на соответствующих приборах индикации.

Показанная на фигурах 1 и 2 конструктивная форма имеет антенну 1, предпочтительно рупорную антенну, которая излучает миллиметровые волны 2. Миллиметровые волны 2 попадают на установленный с возможностью вращения, фокусирующий или дефокусирующий, квазиоптический элемент 3, который отражает их и одновременно фокусирует. Предпочтительно, элемент 3 является вращающимся фокусирующим зеркалом, которое отклоняет лучи 2 в направлении рефлектора 4 и фокусирует их на нем, так что точка 5 максимальной фокусировки расположена на рефлекторе 4 и вместе с ним перемещается по кругу. Рефлектор 4 имеет такую форму, что отображаемая поверхность 6 при взаимодействии с вращающимся конструктивным элементом 3 сканируется кольцеобразно, как это показано на фигуре 1.

Точка 5 максимальной фокусировки, т.е. точка отражения на рефлекторе 4, имеет такую малую протяженность, что она может рассматриваться в качестве виртуальной антенны, которая в дальнем поле создает пучок лучей с большим углом открытия. Этот большой угол открытия необходим для хорошего разрешения с помощью SAR-алгоритмов. Созданный пучок 7 лучей сканирует по кругу подлежащий исследованию проверяемый объект.

Дополнительно, система приема-передачи перемещается по горизонтали (на фигуре 1 из плоскости чертежа) или по вертикали (на фигуре 1 - вверх и вниз), так что в целом проверяемый объект сканируется в двух измерениях. Если все устройство приема-передачи перемещается вокруг проверяемого объекта, то также возможно сканирование с различных перспектив.

Существенным для изобретения является то, что квазиоптический, фокусирующий или дефокусирующий излучаемые антенной 1 волны элемент 3 и рефлектор 4 установлены с возможностью вращения вокруг общей поворотной оси и с равной угловой скоростью. Примеры осуществления показывают предпочтительные формы осуществления, в которых квазиоптический элемент 3 и рефлектор 4 в каждом случае выполнены в виде зеркала с фокусирующим воздействием. Для максимально возможной компактной конструкции и упрощенного анализа квазиоптический элемент 3 и рефлектор 4 выполнены и расположены таким образом, что падающий от антенны 1 на квазиоптический элемент 3 центральный луч проходит параллельно центральному лучу отклоненного пучка лучей, который выходит из рефлектора 4.

В обеих показанных на чертеже формах осуществления квазиоптический элемент 3 и рефлектор 4 расположены в общем конструктивном элементе, который установлен с возможностью вращения вокруг поворотной оси 8. Предпочтительно, конструктивный элемент соединен с поворотным приводом таким образом, что его поворотная ось 8 примерно совпадает с центральным лучом исходящего от антенны 1 пучка лучей. Тем самым поворотная ось 8 проходит примерно по центру через элемент 3 и с наклоном к его зеркальной поверхности 9, как это показано на фигуре 1. Конструктивный элемент, включающий в себя элемент 3 и рефлектор 4, выполнен из легкого малоинерционного материала. Он имеет зеркальную поверхность 9 квазиоптического элемента 3, которая фокусирует исходящие от антенны 1 лучи на расположенную далее зеркальную поверхность 10 рефлектора 4. Тем самым, вращающаяся вокруг поворотной оси зеркальная поверхность 10 рефлектора 4 служит в качестве виртуальной антенны для SAR-анализа. В обеих формах осуществления зеркальные поверхности 9, 10 квазиоптического элемента 3 и рефлектора 4 выполнены и расположены таким образом, что падающий на квазиоптический элемент центральный луч проходит параллельно центральному лучу, который выходит из рефлектора 4.

На фигурах 2 и 3 показан конструктивный элемент, который включает в себя квазиоптический элемент 3 и рефлектор 4 в так называемой Z-образной компоновке. При этом зеркальная поверхность 9 элемента 3 и зеркальная поверхность 10 рефлектора расположены таким образом, что падающий сзади луч (стрелка 11) попадает на зеркальную поверхность 9, от нее сфокусированным отклоняется на зеркальную поверхность 10 рефлектора 4, а затем, расходясь параллельно падающему лучу (стрелка 11) и в его направлении, выходит из конструктивного элемента спереди (стрелка 12).

В представленной на фигуре 5 альтернативной U-образной компоновке падающий луч 11 попадает на зеркальную поверхность 9 квазиоптического элемента 3 и, как в представленной на фигуре 2 форме осуществления, отклоняется от нее вверх на зеркальную поверхность 10 рефлектора 4. Зеркальная поверхность 10 расположена таким образом, что отраженный от нее расходящийся пучок лучей (стрелка 12) снова выходит из конструктивного элемента против направления падения луча, падающего с антенны 1 (стрелка 11). Также и в этой форме осуществления центральный луч выходящего расходящегося пучка лучей (стрелка 12) проходит параллельно центральному лучу падающего пучка лучей (стрелка 11).

Выше в каждом случае описывается случай передачи. Так, ход лучей является обратным, система работает в случае приема соответствующим образом. Сигналы приема-передачи разделяются посредством подходящих конструктивных элементов, например, за счет того, что антенна 1 посредством устройства сопряжения, циркуляторов и/или системы из поляризационных решеток соединена с устройством приема или же передачи.

Также, вместо одной отдельной антенны 1 возможно использование двух расположенных пространственно рядом друг с другом антенн или антенных систем, которые соответственно имеют функцию передачи или приема. Тогда антенна 1 состоит по меньшей мере из одной передающей антенны и по меньшей мере одной пространственно отдельной принимающей антенны.

Похожие патенты RU2442187C2

название год авторы номер документа
Преобразователь волны высшего типа круглого волновода в волну зеркального лучевода 1989
  • Виноградов Дмитрий Вадимович
  • Денисов Григорий Геннадьевич
  • Петелин Михаил Иванович
SU1665432A1
Способ формирования изображения объектов с субдифракционным разрешением в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах длин волн 2018
  • Минин Игорь Владиленович
  • Минин Олег Владиленович
RU2694123C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЭЛЕКТРОМАГНИТНОГО ОТКЛИКА ОТ ПЛОСКОПАРАЛЛЕЛЬНЫХ ПЛАСТИН В СВЧ ДИАПАЗОНЕ 2021
  • Минин Игорь Владиленович
  • Минин Олег Владиленович
RU2758681C1
Способ формирования изображения объектов с субдифракционным разрешением и высоким контрастом 2021
  • Минин Игорь Владиленович
  • Минин Олег Владиленович
RU2777709C1
Способ формирования изображения объектов с субдифракционным разрешением в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах длин волн 2016
  • Минин Игорь Владиленович
  • Минин Олег Владиленович
RU2631006C1
МНОГОФОКАЛЬНЫЙ ОТКРЫТЫЙ РЕЗОНАТОР "КОРШЕС" 1990
  • Корецкий Анатолий Павлович[Ua]
  • Шестопалов Виктор Петрович[Ua]
RU2045797C1
СПОСОБ ДИСТАНЦИОННОГО ОБНАРУЖЕНИЯ ПРЕДМЕТОВ, СКРЫТЫХ ПОД ОДЕЖДОЙ ЛЮДЕЙ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Штейншлейгер В.Б.
  • Мисежников Г.С.
RU2133971C1
СПОСОБ ПОЛУЧЕНИЯ РАДИОИЗОБРАЖЕНИЙ ПРОТЯЖЕННЫХ ОБЪЕКТОВ 2014
  • Мануилов Борис Дмитриевич
  • Мануилов Михаил Борисович
  • Черных Владимир Борисович
  • Резниченко Даниил Владимирович
  • Стрельченко Сергей Александрович
RU2561066C1
АНТЕННА МИЛЛИМЕТРОВОГО ДИАПАЗОНА И СПОСОБ УПРАВЛЕНИЯ АНТЕННОЙ 2018
  • Виленский Артем Рудольфович
  • Макурин Михаил Николаевич
  • Ли Чонгмин
RU2688949C1
РУЧНОЙ ОБНАРУЖИТЕЛЬ ПРЕДМЕТОВ, СКРЫТЫХ ПОД ОДЕЖДОЙ ЛЮДЕЙ 2002
  • Штейншлейгер В.Б.
  • Мисежников Г.С.
  • Загатин В.И.
RU2220454C1

Иллюстрации к изобретению RU 2 442 187 C2

Реферат патента 2012 года УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ ПРОВЕРЯЕМЫХ ОБЪЕКТОВ ПОСРЕДСТВОМ ЭЛЕКТРОМАГНИТНЫХ ВОЛН, ПРЕЖДЕ ВСЕГО, ДЛЯ КОНТРОЛЯ ПАССАЖИРОВ НА НАЛИЧИЕ ПОДОЗРИТЕЛЬНЫХ ПРЕДМЕТОВ

Изобретение относится к устройству для формирования изображения проверяемых объектов посредством электромагнитных волн и может быть использовано, в частности, при контроле пассажиров на наличие подозрительных предметов. Устройство содержит антенну (1), которая излучает электромагнитные волны, прежде всего миллиметровые волны, средства для пространственной фокусировки излученных лучей и средства для манипуляции волнами в точке (5) точной фокусировки таким образом, что эта точка (5) служит в качестве подвижной виртуальной антенны для SAR-анализа. Средства для пространственной фокусировки содержат установленный с возможностью вращения, фокусирующий или дефокусирующий, квазиоптический элемент. Средства для манипуляции волнами в точке (5) точной фокусировки содержат рефлектор (4). Квазиоптический элемент (3) и рефлектор установлены с возможностью вращения вокруг общей поворотной оси (8) и с равной угловой скоростью. Технический результат - улучшение разрешения при меньшем искажении с меньшими аппаратными затратами. 5 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 442 187 C2

1. Устройство для формирования изображения проверяемых объектов посредством электромагнитных волн, прежде всего, для контроля пассажиров на наличие подозрительных предметов, со следующими признаками:
- антенна (1), которая излучает электромагнитные волны, прежде всего миллиметровые волны,
- средства для пространственной фокусировки излученных волн и
- средства для манипуляции волнами в точке (5) точной фокусировки таким образом, что эта точка (5) служит в качестве подвижной виртуальной антенны для SAR-анализа,
при этом средства для пространственной фокусировки содержат установленный с возможностью вращения фокусирующий или дефокусирующий квазиоптический элемент, а средства для манипуляции волнами в точке (5) точной фокусировки содержат рефлектор (4),
отличающееся тем, что квазиоптический элемент (3) и рефлектор установлены с возможностью вращения вокруг общей поворотной оси (8) и с равной угловой скоростью.

2. Устройство по п.1, отличающееся тем, что квазиоптический элемент (3) и рефлектор (4) расположены в общем конструктивном элементе, который установлен с возможностью вращения.

3. Устройство по п.1 или 2, отличающееся тем, что также и рефлектор (4) выполнен фокусирующим или дефокусирующим электромагнитные волны.

4. Устройство по п.3, отличающееся тем, что как квазиоптический элемент (3), так и рефлектор (4) выполнены фокусирующими.

5. Устройство по п.4, отличающееся тем, что как квазиоптический элемент (3), так и рефлектор (4) выполнены в виде зеркала.

6. Устройство по п.1, отличающееся тем, что квазиоптический элемент (3) и рефлектор (4) выполнены и расположены таким образом, что падающий на квазиоптический элемент (3) центральный луч проходит параллельно центральному лучу, который выходит из рефлектора (4).

Документы, цитированные в отчете о поиске Патент 2012 года RU2442187C2

US 2005093733 A1, 05.05.2005
US 2006017605 A1, 26.01.2006
US 2005122258 A1, 09.06.2005
US 6480141 B1, 12.11.2002.

RU 2 442 187 C2

Авторы

Барчер Бернд

Флемиг Уве

Йэкк Михаэль

Даты

2012-02-10Публикация

2008-02-13Подача