СПОСОБ ОЦЕНКИ КОМФОРТНОСТИ РАБОЧЕЙ ЗОНЫ ПО ПАРАМЕТРАМ МИКРОКЛИМАТА Российский патент 2012 года по МПК F24F3/14 G05D23/19 B61D27/00 

Описание патента на изобретение RU2442934C2

Изобретение относится к машиностроению, в частности к устройствам систем безопасности.

Известно, что для исследования параметров микроклимата применяют методы с использованием термографов, психрометров и анемометров (см. Белов С.В. Учебник по безопасности жизнедеятельности. М.: Высшая школа, 2003 г.).

Наиболее близким техническим решением к заявленному объекту является устройство для управления микроклиматом по а.с. СССР №1735828, G05D 23/19, 1992 г. (прототип), содержащее измерители температуры, влажности и скорости движения воздуха рабочей зоны.

Недостатком известного решения является сравнительно невысокая надежность срабатывания и малое быстродействие системы отбора пробы.

Технический результат - повышение эффективности, быстродействия и надежности срабатывания системы.

Это достигается тем, что в способе оценки комфортности рабочей зоны по параметрам микроклимата, заключающемся в том, что сначала осуществляют замер температуры воздуха по термографу или психрометру, затем замеряют влажность воздуха по стационарному или аспирационному психрометрам и определяют скорость движения воздуха по чашечному или крыльчатому анемометрам, отличающийся тем, что на основании полученных параметров - температуры воздуха в рабочей зоне, его влажности и скорости движения - рассчитывают степень комфортности по следующей формуле:

S=7,83-0,1tB-0,0968tO-0,0372P+0,18ν(37,8-tB),

где tB - температура воздуха в рабочей зоне производственного помещения; tO - температура окружающих поверхностей в рабочей зоне; ν - скорость движения воздуха, м/сек;

Р - парциальное давление водяных паров, рассчитываемое по формуле:

Р=0,01φ×Рнас, мм рт.ст.,

где φ - относительная влажность воздуха, %; Рнас - парциальное давление водяного пара в насыщенном состоянии, после чего оценивают комфортность параметров микроклимата по следующей шкале:

1 - очень жарко; 2 - слишком тепло; 3 - тепло, но приятно; 4 - чувство комфорта; 5 - прохладно, но приятно; 6 - холодно; 7 - очень холодно.

На фиг.1 изображен общий вид психрометров - стационарного и аспирационного, на фиг.2 - общий вид анемометров - крыльчатого и чашечного, на фиг.3 представлен общий вид цифрового анемометра.

Устройство для реализации способа оценки комфортности рабочей зоны по параметрам микроклимата содержит приборы по измерению температуры, влажности и скорости движения воздуха. В технике для измерения температуры воздуха, как правило, используют ртутные или спиртовые термометры, термоанемометры и аспирационные психрометры (при наличии источников теплового излучения).

Измерение относительной влажности воздуха. Относительная влажность воздуха обычно измеряется психрометрами. Психрометры бывают двух типов - стационарные и аспирационные.

Стационарный психрометр (фиг.1, слева) состоит из двух одинаковых ртутных или спиртовых термометров с ценой деления не более 0,5°С, закрепленных на штативе. Ртутный (спиртовой) резервуар одного из термометров, называемого влажным (мокрым), обернут кусочком батиста, конец которого свернут жгутиком и опущен в сосуд с дистиллированной водой А для непрерывного поддержания ртутного (спиртового) резервуара во влажном состоянии.

Принцип действия психрометра заключается в следующем. С пoвepxности мокрой ткани Б происходит испарение воды, и, следовательно, влажный термометр теряет больше тепла, чем другой, так называемый сухой, и показания влажного термометра будут всегда ниже показаний сухого (tм<tс). Разность в показаниях сухого и мокрого термометров принято называть психрометрической разностью. Чем меньше влажность воздуха, чем интенсивнее испаряется вода с поверхности обернутого резервуара и тем больше снижается температура влажного термометра. По разности показаний сухого и влажного термометров можно судить о степени влажности воздуха. Когда воздух при данной температуре имеет максимальную влажность (φmаx), испарения влаги не происходит, психрометрическая разность равна нулю, и оба термометра покажут одну и ту же температуру (tc=tм).

На фиг.1 (справа) изображен аспирационный психрометр Ассмана М-34. Он отличается от стационарного тем, что резервуары обоих термометров помещены в специальные металлические трубочки-гильзы В, через которые с помощью механического вентилятора Г просасывается воздух с постоянной скоростью (около 2 м/с).

Аспирационные психрометры (фиг.1, справа) более точны, чем стационарные, так как в них резервуары термометров обдуваются принудительной струей воздуха, что способствует удалению водяных паров с поверхности батиста, образующихся в процессе испарения воды. У стационарных психрометров из-за отсутствия обдува термометров водяные пары скапливаются у поверхности батиста и затрудняют дальнейшее испарение воды, что приводит к искажению показания мокрого термометра. Кроме того, наличие у аспирационных психрометров металлических гильз обеспечивает защиту резервуаров термометров от механических повреждений, а также от теплового излучения, которое может исказить показание термометров.

К самопишущим приборам для регистрации температуры и относительной влажности воздуха относятся термографы и гигрографы, которые выпускаются с суточным и недельным вращением барабана.

Измерение скорости движения воздуха. Скорость движения воздуха измеряют анемометрами и термоанемометрами.

Анемометры бывают двух типов - крыльчатые (фиг.2, слева) и чашечные (фиг.2, справа). Чашечным анемометром МС-13 измеряют скорость воздуха от 1 до 20 м/с, крыльчатым анемометром АСО-3 - скорость воздуха от 0,5 до 1 м/с.

Принцип действия анемометров обоих типов основан на том, что частота вращения крыльчатки тем больше, чем больше скорость движения воздуха. Вращение крыльчатки передается на счетный механизм. Разница в показаниях до и после измерения, деленная на время наблюдения, показывает число делений в 1 с. Специальный тарировочный паспорт, прилагаемый к каждому прибору, позволяет по вычисленной величине делений определить скорость движения воздуха.

Термоанемометр - это электрический прибор на полупроводниках. Принцип его действия основан на измерении величины сопротивления датчика при изменении температуры и скорости движения воздуха.

Термоанемометр применяется при измерении малых скоростей воздуха (от 0,03 до 5 м/с) при температуре воздуха в производственных помещениях не ниже 10°С.

Малогабаритный анемометр АПР-2 (см. фиг.3), прибор нового поколения, предназначен для определения скорости воздушного потока при метеорологических измерениях на суше и море, в шахтах и рудниках всех категорий, а также в системах промышленной вентиляции. Рекомендуется для укомплектования лабораторий по охране труда предприятий и санэпидемнадзора. Выпускаются в исполнении с уровнем защиты РО Иа по ГОСТ 22782.5- 78, что по европейским нормам EN 50014/50020 соответствует уровню самозащиты Ex ia ITI.

Техническая характеристика анемометра АПР-2:

Диапазон измерений, м/с 0,2…20,0 Порог чувствительности, м/с, не более 0,15 Погрешность, м/с, не более (ν - измеряемая скорость, м/с) ±(0,05ν+0,1) Источник питания 4 элемента типа A316 Размеры, мм 310×70×55 Масса, кг 0,6

Способ оценки комфортности рабочей зоны по параметрам микроклимата осуществляют следующим образом.

Обязательно соблюдают следующий порядок выполнения операций при определении параметров микроклимата:

1. Определить температуру воздуха с помощью термометра.

2. Определить относительную влажность воздуха с помощью аспирационного психрометра Ассмана М-34. Для чего необходимо:

с помощью пипетки смочить водой кусочек батиста, закрепленный на резервуаре влажного термометра;

ключом завести газовую пружину прибора, приводящую во вращение крыльчатку вентилятора;

через 4 мин снять показания по сухому и влажному термометрам; вычислить психрометрическую разность Δt=tc-tм;

по вычисленной психрометрической разности Δf с помощью психрометрической таблицы (табл.2.1) определить значение относительной влажности. Результаты измерений и расчетов занести в протокол.

3. Определить скорость движения воздуха, создаваемого осевым вентилятором (настольного типа), в рабочих точках, указанных преподавателем (но не менее 1 м от центра вентилятора), при помощи крыльчатого анемометра АСО-3. Порядок работы с прибором следующий:

измерить расстояния L от рабочих точек (не менее 3) до оси вентилятора и включить его;

снять показания со шкалы счетного механизма анемометра;

установить анемометр в рабочей точке так, чтобы воздушный поток от вентилятора был направлен непосредственно на крыльчатку анемометра. Дать вращаться анемометру вхолостую в течение 1 мин;

включить одновременно секундомер и счетный механизм анемометра. Через 1-2 мин анемометр и секундомер выключить и записать новые показания стрелок на счетном механизме. Опыт повторить трижды. Результаты измерений занести в протокол;

по тарировочному паспорту найти значение скорости движения воздуха для каждого замера и среднее значение для каждой рабочей точки: νср=(ν12+3)/3.

Дать оценку изменения скорости воздуха в зависимости от расстояния. Исследование изменения скорости в зависимости от расстояния повторить другим членам студенческой бригады, выполняющей данную работу.

Пример выполнения предложенного способа

1). Построить зависимость скорости движения воздуха от показателя комфортности, если показания термометров по психрометру в ткацком цехе фабрики составили: - сухого tC=24°С, мокрого - tM=19,5°С. Категория работ - IIб, показатель комфортности S=4. Принять температуру окружающих предметов равной температуре воздуха в цехе, т.е. tO=tB, которая в свою очередь определяется по показаниям сухого термометра, т.е. tB=tC (исходные данные для расчета по своему варианту принять из табл.2.4).

2). Сделать вывод, сравнивая полученные результаты с допустимыми нормами параметров микроклимата для теплого периода года с незначительным избытком явного тепла по ГОСТ 12.1.005-88, и в случае несоответствия полученных результатов нормативным значениям рассчитать показатель комфортности S для верхнего диапазона допустимых значений тех параметров микроклимата, которые не соответствуют допустимым значениям.

Разность в показаниях сухого и мокрого термометров принято называть психрометрической разностью (Δt=tC-tM); она служит для определения влажности, φ %, по табл.2.1, прилагаемой к психрометру.

В нашем случае Δt=tC-tM=24-19,5=4,5°С. Следовательно, относительная влажность воздуха в цехе составит - φ=65%. Итак, для расчета получены следующие данные:

tB=24°С; φ=65%.

Теперь рассчитаем парциальное давление водяных паров по формуле

Р=0,01φ × Рнас, мм рт.ст.,

где Рнас - парциальное давление водяного пара в насыщенном состоянии, определяемое по показанию сухого термометра из табл.1.

Таблица 1 Зависимость парциальных давлений водяных паров в насыщенном состоянии от температуры воздуха Температура Воздуха tB, °C Парциальное давление водяного пара, Рнас, мм рт.ст. Температура Воздуха tB, °С Парциальное давление водяного пара, Рнас, мм рт.ст. 10 9,209 21 18,650 11 9,844 22 19,827 12 10,518 23 21,068 13 11,231 24 22,377 14 11,987 25 23,756 15 12,788 26 25,209 16 13,634 27 26,739 17 14,530 28 28,349 18 15,477 29 30,043 19 16,477 30 31,824 20 17,533 31 33,695

Для нашего значения температуры tB=24°С парциальное давление водяного пара в насыщенном состоянии Рнас=22,38.

Тогда парциальное давление водяных паров для нашего случая определится так:

Р=0,01φ × Рнас=0,01×65×22,38=14,5 мм рт.ст.

Теперь определяем требуемую скорость движения воздуха в ткацком цехе, при которой показатель хорошего самочувствия был бы равен S=4:

Теперь переходим к построению графика зависимости скорости движения воздуха от показателя комфортности для группы вариантов: I - 1, 3, 4, 5, 6; II - 7, 8, 9, 10, 11; III - 2, 12, 13, 14, 15; IY - 16, 17, 18, 19, 20, 21, 22; Y - 23, 24, 25, 26, 27, 28, 29; YI - 30, 31, 32, 33, 34, 35.

На фиг.4 в качестве примера приведена функциональная зависимость скорости движения воздуха от показателя комфортности и формула ее линейной аппроксимации.

ВЫВОД: 1). Для рассматриваемого случая существующие параметры микроклимата в цехе (tB=24°С; φ=65%, ν=0,58 м/сек) соответствуют допустимым нормативным значениям (при tB=24°С и ниже: φ=75%, ν=0,3…0,7 м/сек).

В качестве примера рассмотрим случай, когда имеет место превышение рассчитанных параметров микроклимата, т.е. tB=24°С; φ=50%, ν=1,73 м/сек, а допустимыми по нормам значениями являются: при tB=24°C и ниже: φ=75%, ν=0,3…0,7 м/сек), т.е. рассчитаем показатель комфортности S для случая: tB=24°С, φ=50%, ν=0,7 м/сек.

Парциальное давление водяных паров для нашего случая определится так:

Р=0,01φ×Рнас=0,01×50×22,38=11,2 мм рт.ст.

S=7,83-0,1tB-0,0968tO-0,0372P+0,18ν(37,8-tB)=7,83-0,1×24-0,0968×24-0,0372×11,2+0,18×0,7×(37,8-24)=4,4

Показатель самочувствия может иметь следующие значения: 1 - очень жарко: 2 - слишком тепло; 3 - тепло, но приятно: 4 - чувство комфорта; 5 - прохладно, но приятно; 6 - холодно; 7 - очень холодно.

Показатель S может выражаться и дробным числом, что позволяет более точно оценить, какому ощущению (например, к 3 баллам - тепло или к 4 баллам - комфорт и т.д.) ближе те или иные состояния самочувствия человека. Для легких физических работ S=3; для работ средней тяжести S=4; для тяжелых физических работ S=5 баллам.

Приведенная зависимость позволяет решить в необходимых случаях и обратную задачу. Задаваясь необходимой степенью комфорта и оптимальными значениями температуры и влажности воздуха, можно вычислить необходимую скорость движения воздуха, которая для данных конкретных условен будет больше всего отвечать требованиям обеспечения комфорта.

ВЫВОД: 2). Данное значение показателя S=4,4 находится между S=4 (комфорт) и S=5 (прохладно, но приятно), т.е. допустимая скорость движения воздуха ν=0,7 м/сек более приемлема с гигиенической точки зрения.

Похожие патенты RU2442934C2

название год авторы номер документа
СПОСОБ ОЦЕНКИ КОМФОРТНОСТИ РАБОЧЕЙ ЗОНЫ ПО ПАРАМЕТРАМ МИКРОКЛИМАТА 2012
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
  • Стареева Мария Михайловна
RU2509322C1
СПОСОБ МНОГОКРИТЕРИАЛЬНОЙ ОЦЕНКИ КОМФОРТНОСТИ РАБОЧЕЙ ЗОНЫ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ 2011
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2472134C1
СПОСОБ МНОГОКРИТЕРИАЛЬНОЙ ОЦЕНКИ КОМФОРТНОСТИ РАБОЧЕЙ ЗОНЫ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ 2011
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2511022C2
СИСТЕМА КОНДИЦИОНИРОВАНИЯ С ТЕПЛООБМЕННЫМИ АППАРАТАМИ 2010
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2453774C2
СПОСОБ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА С КОМБИНИРОВАННЫМ КОСВЕННЫМ ОХЛАЖДЕНИЕМ И КОНДИЦИОНЕР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2509961C2
ПРЯМОТОЧНАЯ МНОГОЗОНАЛЬНАЯ СИСТЕМА КОНДИЦИОНИРОВАНИЯ 2010
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2452900C2
СПОСОБ ОЦЕНКИ ЗАПЫЛЕННОСТИ РАБОЧЕЙ ЗОНЫ 2010
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2422802C1
Способ оценки комфортности микроклимата в помещениях жилых, общественных и административных зданий 2016
  • Бухмиров Вячеслав Викторович
  • Пророкова Мария Владимировна
RU2636807C1
СИСТЕМА КОНДИЦИОНИРОВАНИЯ ВОЗДУХА С КОМБИНИРОВАННЫМ КОСВЕННЫМ ОХЛАЖДЕНИЕМ 2010
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2452901C2
УСТАНОВКА ОХЛАЖДЕНИЯ ВОЗДУХА С ИСПАРЕНИЕМ РЕЦИРКУЛИРУЮЩЕЙ ВОДЫ 2010
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
RU2452902C2

Иллюстрации к изобретению RU 2 442 934 C2

Реферат патента 2012 года СПОСОБ ОЦЕНКИ КОМФОРТНОСТИ РАБОЧЕЙ ЗОНЫ ПО ПАРАМЕТРАМ МИКРОКЛИМАТА

Изобретение относится к машиностроению, в частности к устройствам систем безопасности. Способ оценки комфортности рабочей зоны по параметрам микроклимата заключается в том, что сначала осуществляют замер температуры воздуха по термографу или психрометру, затем замеряют влажность воздуха по стационарному или аспирационному психрометрам и определяют скорость движения воздуха по чашечному или крыльчатому анемометрам. На основании полученных параметров - температуры воздуха в рабочей зоне, его влажности и скорости движения рассчитывают степень комфортности по расчетной формуле. После чего оценивают комфортность параметров микроклимата по следующей шкале: 1 - очень жарко; 2 - слишком тепло; 3 - тепло, но приятно; 4 - чувство комфорта; 5 - прохладно, но приятно; 6 - холодно; 7 - очень холодно. Технический результат - повышение эффективности, быстродействия и надежности срабатывания системы. 4 ил., 1 табл.

Формула изобретения RU 2 442 934 C2

Способ оценки комфортности рабочей зоны по параметрам микроклимата, заключающийся в том, что сначала осуществляют замер температуры воздуха по термографу или психрометру, затем замеряют влажность воздуха по стационарному или аспирационному психрометрам и определяют скорость движения воздуха по чашечному или крыльчатому анемометрам, отличающийся тем, что на основании полученных параметров - температуры воздуха в рабочей зоне, его влажности и скорости движения рассчитывают степень комфортности по следующей формуле
S=7,83-0,1tB-0,0968tO-0,0372P+0,18ν(37,8-tB),
где tB - температура воздуха в рабочей зоне производственного помещения; tO - температура окружающих поверхностей в рабочей зоне; ν - скорость движения воздуха, м/с; Р - парциальное давление водяных паров, рассчитываемое по формуле Р=0,01φ·Pнас, мм рт.ст.,
где φ - относительная влажность воздуха, %; Рнас - парциальное давление водяного пара в насыщенном состоянии, определяемое по показанию сухого термометра, после чего оценивают комфортность параметров микроклимата по следующей шкале: 1 - очень жарко; 2 - слишком тепло; 3 - тепло, но приятно; 4 - чувство комфорта; 5 - прохладно, но приятно; 6 - холодно; 7 - очень холодно.

Документы, цитированные в отчете о поиске Патент 2012 года RU2442934C2

Устройство для управления микроклиматом 1988
  • Лубенцов Валерий Федорович
SU1735828A1
Белов С.В
и др
Безопасность жизнедеятельности
- М.: Высшая школа, 2003
US 5921314 А, 13.07.1999
СПОСОБ РЕГУЛИРОВАНИЯ ТЕПЛООБМЕНА В СИСТЕМЕ ВЕНТИЛЯЦИИ ОФИСНЫХ И ЖИЛЫХ ПОМЕЩЕНИЙ И УСТРОЙСТВО ДЛЯ РЕАЛИЗАЦИИ ЭТОГО СПОСОБА 2004
  • Аристов Юрий Иванович
  • Мухин Валентин Александрович
  • Мезенцев Иван Владимирович
RU2277205C1
СПОСОБЫ ФОРМИРОВАНИЯ МИКРОКЛИМАТА В ПОМЕЩЕНИЯХ (ВАРИАНТЫ) И УСТАНОВКА ДЛЯ ИХ ОСУЩЕСТВЛЕНИЯ 2003
  • Фасюра В.Н.
  • Фасюра Д.В.
  • Фасюра В.В.
  • Захваткин С.С.
RU2247902C2
УСТРОЙСТВО И СПОСОБ ДЛЯ УПРАВЛЕНИЯ УРОВНЯМИ ХАРАКТЕРИСТИК ИСКУССТВЕННОГО МИКРОКЛИМАТА В ПОМЕЩЕНИИ 1995
  • Джозеф Д.Рилей
  • Марк Х.Попек
RU2141081C1
Способ контроля воздушной плотности конденсационной паротурбинной установки 1978
  • Ляшевич Николай Александрович
SU767496A1

RU 2 442 934 C2

Авторы

Кочетов Олег Савельевич

Стареева Мария Олеговна

Даты

2012-02-20Публикация

2010-05-21Подача