СОСТАВ ДЛЯ УДАЛЕНИЯ НАКИПИ С ТЕПЛООБМЕННЫХ ПОВЕРХНОСТЕЙ Российский патент 2012 года по МПК C02F5/08 

Описание патента на изобретение RU2443637C2

Изобретение относится к области теплотехники и конкретно касается удаления накипи и солеотложений с поверхности теплообменной аппаратуры в замкнутых системах водяного охлаждения в химической и нефтеперерабатывающей промышленности, теплоэнергетике, двигателях внутреннего сгорания, включая двигатели тепловозов, и других областях.

Образование труднорастворимых солеотложений и накипи на поверхности теплообменной аппаратуры связано с воздействием повышенной температуры на растворенные в воде компоненты. В результате протекающих у поверхности теплообмена (в местах наиболее высокого температурного напора) физико-химических процессов растворенные компоненты образуют нерастворимые в воде соединения, которые осаждаются на поверхности, где наиболее вероятно образование центров кристаллизации. Обычными составляющими компонентами накипи являются карбонаты кальция и магния, оксид кремния, сульфат кальция, силикаты кальция и магния, фосфаты кальция, цинка и железа и др. нерастворимые соединения [1, 2]. Состав образующейся накипи не бывает однозначным и зависит от состава используемой воды, режимов работы оборудования и др. факторов. Выделение накипи резко снижает коэффициент теплопередачи и, следовательно, эффективность работы теплообменного оборудования, увеличивает гидравлическое сопротивление прохождения воды и может даже привести к полной закупорке трубопроводов. Кроме того, образование накипи провоцирует коррозионное разрушение металла под ее слоем [3].

Наиболее успешный подход в борьбе с накипью заключается в предварительной обработке используемой воды, подразумевающей полное удаление растворенных солей. Однако такая обработка является дорогой, требует значительных материальных и энергетических затрат, поэтому применяется редко. В качестве борьбы с накипью используется также метод введения в оборотную воду ингибиторов накипеобразования [1]. Однако, как правило, действие ингибиторов строго специфично по отношению к составу используемой воды, который может меняться даже от одного источника в зависимости от сезона. В качестве примера можно привести известный препарат «калгон», представляющий собой разновидность полифосфата натрия [4], который препятствует отложению только карбонатной накипи, но не ингибирует отложение фосфатных и силикатных солей, поэтому находит ограниченное применение, например, в стиральных машинах.

Наиболее рациональным и экономически целесообразным в настоящее время является периодическое удаление накипи с поверхности теплообменного оборудования, для чего используются разнообразные химические составы. Их многообразие обусловлено различным составом и кристаллической структурой образующейся накипи.

Действие составов, удаляющих накипь, основано на полном или частичном удалении осадка накипи и препятствии обратному осаждению образующихся частиц на поверхность теплообмена. Для этих целей используют, как правило, неорганические или органические кислоты и комплексообразующую или поверхностно-активную добавку, а также для предотвращения коррозии металла при воздействии кислоты - ингибитор коррозии металла.

Например, известен состав для растворения накипи, содержащий сульфаминовую кислоту (95,8 мас.%), алифатический полиэфир (0,4%) и ингибитор коррозии (3,8%)

[5]. Однако используемые сульфаминовая кислота и полиэфир являются достаточно дорогими реагентами, кроме того, при нагревании в водных растворах сульфаминовая кислота гидролизуется до сульфата аммония, который может провоцировать отложение сульфатной накипи.

Известен состав для удаления отложений и накипи с внутренних поверхностей теплообменного оборудования, содержащий (мас.%): пиросульфат или персульфат натрия, калия или аммония 0,09-10, полифенольные соединения древесины или коры хвойных деревьев 0,003-6,0, уротропин 0,01-4, неионогенное ПАВ 0,00015-0,1, соляную кислоту 2,0-24,0, ацетон 1,0-8,0, воду - остальное до 100% [6] (прототип). К недостаткам прототипа относятся:

1. Использование горючего и взрывоопасного компонента - ацетона.

2. Состав не содержит солей плавиковой кислоты, поэтому пригоден только для специфических накипей, не содержащих диоксид кремния и силикаты.

3. Состав содержит полифенольные соединения древесины или коры хвойных пород, индивидуальный состав которых зависит от породы дерева, способа выделения и других факторов, и изменение компонентного состава этой смеси может привести к осложнению при удалении накипи.

4. Состав, предлагаемый в прототипе, предполагает использование персульфатов - производных перекиси водорода, которая (как и сами персульфаты) является сильным окислителем и с органическим веществом - ацетоном может давать взрывоопасные гидроперекиси.

В данном техническом решении предлагается состав для удаления накипи с поверхностей теплообменного оборудования, содержащий:

соляную кислоту 2-15 мас.%;

ингибитор коррозии (уротропин или тиомочевина) 0,5-3%;

фторид натрия (калия или аммония) 1-4%;

мета-нитробензолсульфокислоту 3-7%;

воду - остальное до 100%.

Существенным отличительным признаком предлагаемого состава для удаления накипи является использование мета-нитробензолсульфокислоты, которая выступает в качестве активной кислотной компоненты, принимающей участие в растворении накипи и способной адсорбироваться на поверхности металла, выступая дополнительным ингибитором коррозии.

Оборотная система, содержащая накипь на теплообменных поверхностях, обрабатывается предлагаемым составом при температуре 70-80°C. Моющий состав после обработки сливается, и система промывается водой. Эффективность использования предлагаемого состава определена путем удаления накипи с внутренней поверхности медных трубок систем охлаждения тепловозов. Антикоррозионный эффект проверен на стальных пластинах из стали Ст3 гравиметрическим методом.

Пример 1. В качестве образцов использовали отрезки медной трубки, вырезанной из системы охлаждения тепловоза, длиной 5 мм, наружный диаметр - 25 мм, толщина стенки - 3 мм, нарост накипи - 4-6 мм. Образец трубы помещали в пластмассовую емкость, содержащую 10 г концентрированной соляной кислоты, 2 г уротропина, 2 г фторида натрия, 5 г мета-нитробензолсульфокислоты и 81 г воды. Растворение осуществляли путем нагревания емкости на водяной бане при температуре 70-80°C и непрерывном перемешивании. Полное растворение накипи на внутренней поверхности отрезка трубы осуществлялось за 35 мин. Коррозия на поверхности трубы не наблюдалась.

Пример 2. В условиях примера 1, но при использовании 15 г концентрированной соляной кислоты и соответственно 76 г воды, растворение накипи наблюдалось за 24 мин.

Пример 3. В условиях примера 1, но при использовании 5 г соляной кислоты и 86 г воды, растворение накипи наблюдалось за 47 мин.

Пример 4. В условиях примера 1, но при использовании 2 г соляной кислоты и 89 г воды полное растворение осадка наблюдалось за 93 мин.

Пример 5. В условиях примера 1, но при использовании 2 г тиомочевины (вместо уротропина) растворение накипи наблюдалось за 31 мин.

Пример 6. В условиях примера 1, но при использовании 4 г фторида калия (вместо фторида натрия) и 79 г воды растворение накипи наблюдалось за 26 мин.

Пример 7. В условиях примера 1, но при использовании 2 г фторида аммония (вместо фторида натрия) растворение накипи наблюдалось за 32 мин.

Пример 8. В условиях примера 6, но при использовании 5 г фторида калия и 78 г воды время растворения накипи составляло 25 мин.

Пример 9. В условиях примера 1, но при использовании 1 г фторида натрия и 82 г воды, растворение накипи происходило за 48 мин.

Пример 10. В условиях примера 1, но при использовании 7 г мета-нитробензолсульфокислоты и 79 г воды, растворение накипи происходило за 32 мин.

Пример 11. В условиях примера 1, но при использовании 3 г мета-нитробензолсульфокислоты и 83 г воды, время растворения накипи составляло 42 мин.

Пример 12. В условиях примера 1, но при использовании 2 г мета-нитробензолсульфокислоты и 84 г воды растворение накипи происходило за 68 мин.

Пример 13. Стальную пластинку (20×20×1,5 мм) из Ст3 помещали на 30 мин в раствор, содержащий состав, соответствующий примеру 1 при температуре 70-80°C. Методом гравиметрии оценена потеря массы пластинки (4%).

Пример 14. В условиях примера 13, но при введении в раствор 3 г уротропина и 82 г воды, потеря массы составила 3,8%.

Пример 15. В условиях примера 13, но при введении 0,5 г уротропина и 82,5 г воды, потеря массы пластинки составила 9%.

Пример 16. В условиях примера 13, но при использовании состава, отвечающего примеру 5, потеря массы пластинки составила 3,5%.

Пример 17. В условиях примера 13, но при применении состава, соответствующего примеру 2, потеря массы образца составила 6,8%.

Пример 18. В условиях примера 13, но при использовании состава, соответствующего примеру 11, потеря массы образца составила 5,2%.

Приведенные примеры использования предлагаемого состава для удаления накипи показывают, что увеличение количества соляной кислоты более 15 мас.% является нецелесообразным, т.к. это не дает существенного увеличения эффективности растворения накипи, но способствует усилению коррозии стального оборудования. Уменьшение количества соляной кислоты в составе для удаления накипи меньше 2% приводит к существенному увеличению времени растворения накипи. Содержание ингибитора коррозии наиболее целесообразно в количестве 0,5-3%, фторидов - 1-4%, мета-нитробензолсульфокислоты - 3-7%.

Таким образом, предложен состав, который эффективно удаляет накипь с теплообменных поверхностей, вызывает минимальную коррозию аппаратуры и содержит доступные компоненты, выпускаемые в промышленном масштабе.

Состав пригоден для удаления накипей, содержащих карбонаты, силикаты, диоксид кремния и сульфаты.

Источники информации

1. Дирей П.А., Абалихина Т.А., Сильванская Т.А. Ингибирование аномальных процессов в системах водоснабжения. // Обзорная информация. Серия: Охрана окружающей среды и рациональное использование природных ресурсов. - М.: НИИТЭХИМ. 1988. вып.1 (74). 42 с.

2. Иванов A.M. Основные пути ингибирования отложений солей жесткости и оценка их эффективности в конкретных условиях. // Химия и технология воды. 1987. Т.9. №4. С.307-311.

3. Ввозная Н.Ф. Химия воды и микробиология. - М.: Высшая школа. 1979. С.187.

4. Реми Г. Курс неорганической химии. T.1. - М.: Мир. 1972. С.618.

5. Поверхностные явления и поверхностно-активные вещества. Справочник.//Под ред. А.А.Абрамзона Е.Д.Щукина. - Л.: Химия. 1984. С.338.

6. Лифанов Е.В., Колотыгин О.А. Патент РФ №2331591. 2008.

Похожие патенты RU2443637C2

название год авторы номер документа
Препарат для удаления накипи и очистки внутренних поверхностей теплоэнергетического и технологического оборудования от накипных отложений 2020
  • Жариков Михаил Геннадьевич
  • Салпагаров Руслан Юсуфович
RU2738662C1
Способ очистки внутренних поверхностей теплоэнергетического и технологического оборудования от накипных отложений с помощью препарата от накипи 2020
  • Жариков Михаил Геннадьевич
  • Салпагаров Руслан Юсуфович
RU2735015C1
СОСТАВ ДЛЯ УДАЛЕНИЯ НАКИПИ 2013
  • Вайнапель Марк Львович
  • Чаусов Фёдор Фёдорович
RU2515829C1
СОСТАВ ДЛЯ УДАЛЕНИЯ НАКИПИ И ОТЛОЖЕНИЙ 2005
  • Колотыгин Олег Анатольевич
  • Лифанов Евгений Викентьевич
RU2324661C2
СОСТАВ ДЛЯ УДАЛЕНИЯ МИНЕРАЛЬНЫХ ОТЛОЖЕНИЙ 2005
  • Смольков Анатолий Андреевич
  • Медков Михаил Азарьевич
  • Войтов Владимир Николаевич
  • Черкасс Вячеслав Степанович
RU2325333C2
СОСТАВ ДЛЯ УДАЛЕНИЯ ОТЛОЖЕНИЙ И НАКИПИ С ВНУТРЕННИХ ПОВЕРХНОСТЕЙ ТЕПЛООБМЕННОГО ОБОРУДОВАНИЯ 2007
  • Лифанов Евгений Викентьевич
  • Колотыгин Олег Анатольевич
RU2331591C1
СОСТАВ ДЛЯ УДАЛЕНИЯ НАКИПИ 2014
  • Шаманский Сергей Сергеевич
RU2554583C1
СПОСОБ УДАЛЕНИЯ НАКИПИ И ЗАЩИТЫ ОТ ОТЛОЖЕНИЙ СОЛЕЙ И КОРРОЗИИ 2007
  • Хуторянский Виталий Аркадьевич
  • Верхозин Виталий Валерьевич
  • Большедворская Ада Валерьевна
RU2339586C1
СОСТАВ ДЛЯ УДАЛЕНИЯ НАКИПИ 2003
  • Хуторянский В.А.
  • Колотыгин О.А.
  • Лифанов Е.В.
  • Верхозин В.В.
  • Наманюк А.В.
  • Большедворская А.В.
RU2238915C1
ИНГИБИТОР КИСЛОТНОЙ КОРРОЗИИ МЕТАЛЛОВ 2013
  • Кузнецов Юрий Игоревич
  • Авдеев Ярослав Геннадиевич
  • Зель Ольга Оттовна
RU2539129C1

Реферат патента 2012 года СОСТАВ ДЛЯ УДАЛЕНИЯ НАКИПИ С ТЕПЛООБМЕННЫХ ПОВЕРХНОСТЕЙ

Изобретение относится к области теплотехники и касается вопроса удаления накипи на теплообразующих поверхностях аппаратуры систем водоохлаждения. Состав содержит соляную кислоту в количестве 2-15 мас.%, ингибитор коррозии - уротропин или тиомочевина - 0,5-3%, фторид натрия, калия или аммония - 1-4%, мета-нитробензолсульфокислоту - 3-7% и воду - остальное до 100%. Предложенный состав позволяет эффективно растворять труднорастворимую накипь, содержащую карбонаты, силикаты, диоксид кремния и сульфаты. При его использовании наблюдается лишь незначительная коррозия материала аппаратуры. 18 пр.

Формула изобретения RU 2 443 637 C2

Состав для удаления накипи с теплообменных поверхностей, содержащий соляную кислоту и ингибитор коррозии, отличающийся тем, что он дополнительно содержит фторид натрия, калия или аммония и мета-нитробензолсульфокислоту в следующем соотношении, мас.%:
соляная кислота 2-15 ингибитор коррозии - уротропин или тиомочевина 0,5-3 фторид натрия, калия или аммония 1-4 мета-нитробензолсульфокислота 3-7 вода остальное до 100%

Документы, цитированные в отчете о поиске Патент 2012 года RU2443637C2

СОСТАВ ДЛЯ УДАЛЕНИЯ НАКИПИ И ОТЛОЖЕНИЙ 2005
  • Колотыгин Олег Анатольевич
  • Лифанов Евгений Викентьевич
RU2324661C2
СОСТАВ ДЛЯ УДАЛЕНИЯ ОТЛОЖЕНИЙ И НАКИПИ С ВНУТРЕННИХ ПОВЕРХНОСТЕЙ ТЕПЛООБМЕННОГО ОБОРУДОВАНИЯ 2007
  • Лифанов Евгений Викентьевич
  • Колотыгин Олег Анатольевич
RU2331591C1
СОСТАВ ДЛЯ УДАЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ МИНЕРАЛЬНЫХ СОЛЕОТЛОЖЕНИЙ С ТЕПЛОЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ 2000
  • Дрикер Б.Н.
  • Аронов М.С.
  • Хромцова А.З.
  • Цирульникова Н.В.
  • Ваньков А.Л.
RU2177458C1
СОСТАВ ДЛЯ УДАЛЕНИЯ НАКИПИ 2003
  • Хуторянский В.А.
  • Колотыгин О.А.
  • Лифанов Е.В.
  • Верхозин В.В.
  • Наманюк А.В.
  • Большедворская А.В.
RU2238915C1
Способ определения зон безопасности проведения спиц компрессионно-дистракционного аппарата в предплечье на патолого-анатомическом материале 1981
  • Грицанов Александр Иванович
  • Фомин Николай Федорович
  • Пинчук Василий Дмитриевич
SU1103853A1
CN 1235126 A, 17.11.1999.

RU 2 443 637 C2

Авторы

Хоменко Андрей Павлович

Каргапольцев Сергей Константинович

Гозбенко Валерий Ерофеевич

Руссавская Наталья Владимировна

Розенцвейг Игорь Борисович

Левковская Галина Григорьевна

Якимова Галина Анатольевна

Сосновская Нина Геннадьевна

Корчевин Николай Алексеевич

Даты

2012-02-27Публикация

2010-05-11Подача