Изобретение относится к нефтяному машиностроению, в частности к устройствам электроцентробежных насосов для подъема из скважин жидкости с повышенным содержанием песка и проппанта.
Известен всасывающий модуль электроцентробежного насоса, содержащий корпус с подводящими отверстиями, вал и пенометаллический фильтр, размещенный между корпусом и валом с образованием кольцевых полостей между ними, причем подводящие отверстия расположены в корпусе в пределах установки фильтра (см., например, патент РФ №2261369, F04D 13/10, 2005).
Недостатком всасывающего модуля является ограниченный ресурс работы вследствие потери пропускной способности пенометаллического фильтра при загрязнении твердыми частицами.
Известен входной модуль погружного электроцентробежного насоса, содержащий корпус с расположенными в определенной периодичности подводящими отверстиями, вал, промежуточные подшипники, дистругирующие аппараты, многосекционный щелевой фильтр, установленный снаружи корпуса с помощью опорных колец (см., например, патент РФ №42081, F04D 13/10, 2004).
Недостатком входного модуля является то, что попадающие в него с откачиваемой жидкостью частицы с размером менее ширины щели 100…200 мкм накапливаются в застойных зонах вблизи подшипников, вызывая их интенсивный износ. Стремление к задержанию мелкодисперсных частиц на щелевом фильтре за счет уменьшения ширины щели приводит к ранней его кольматации и потере пропускной способности входного модуля.
Наиболее близким по технической сущности является входной модуль погружного центробежного насоса, содержащий перфорированный корпус, расположенные вокруг корпуса секции щелевого фильтроэлемента, вал, промежуточные подшипники, перфорированные трубки, отбойники с элементами подпружинивания, головку с подшипником и основание с защитной втулкой (см., например, патент РФ №2312253, F04D 13/10, 2007).
Недостатком принятого за прототип входного модуля является непродолжительный ресурс работы при наличии в жидкости разнородных по фракционному составу примесей. Мелкодисперсные частицы, прошедшие сквозь щели фильтроэлемента, либо оседают в застойных зонах входного модуля и изнашивают подшипники несмотря на наличие отбойников, либо достигают насосных секций и изнашивают рабочие органы насоса.
Задачей настоящего изобретения является повышение долговечности и надежности работы входного модуля и погружного электроцентробежного насоса при эксплуатации в скважинах с большим выносом механических примесей.
Указанный технический результат достигается тем, что во входном модуле погружного электроцентробежного насоса, содержащем перфорированный корпус, расположенные вокруг него секции щелевого фильтроэлемента, вал, промежуточные подшипники, перфорированные трубки, отбойники с элементами подпружинивания, головку с подшипником и основание с защитной втулкой, согласно изобретению в секции щелевого фильтроэлемента, примыкающей к основанию, выполнены отверстия, а на валу на их уровне установлен шнек с левым направлением спирали, при этом отверстия расположены напротив нижних отверстий нижней перфорированной трубки.
Отверстия в нижней секции щелевого фильтроэлемента в сочетании с находящимися напротив них отверстиями в перфорированном корпусе и нижней перфорированной трубке соединяют полость входного модуля со скважиной. Шнек с левым направлением спирали направляет жидкость из нижней части входного модуля через эту систему отверстий в скважину.
Предлагаемый входной модуль погружного электроцентробежного насоса схематично изображен на фиг.1, на фиг.2 показан продольный разрез щелевого фильтроэлемента, фрагмент.
Входной модуль состоит из перфорированного корпуса 1 с входными отверстиями 2 и резьбой на концах, вокруг которого расположены секции щелевого фильтроэлемента 3 с уплотнительными наружными кольцами (фиг.1). Щелевой фильтроэлемент 3 выполнен из продольных опорных профилей 4 и навитого поверх них наружного профиля 5 с образованием непрерывной щели 6 между витками (фиг.2), причем оба типа профилей металлически связаны для обеспечения конструкционной прочности и стабильности размеров. В перфорированном корпусе 1 посредством промежуточных подшипников 7 установлен вал 8 (фиг.1). Промежуточные подшипники 7 выполнены с осевыми отверстиями 9 и отделены друг от друга перфорированными трубками 10, установленными концентрично валу 8. Между трубками 10 и валом 8 имеется кольцевой зазор 11. В промежуточных подшипниках 7 попарно размещены отбойники 12 с элементами подпружинивания. На резьбовые окончания перфорированного корпуса 1 накручивается головка 13 с подшипником 14 и основание 15 с защитной втулкой 16.
В секции щелевого фильтроэлемента 3, примыкающей к основанию 15, выполнены радиальные сквозные отверстия 17, расположенные напротив нижних отверстий нижней перфорированной трубки 10 и соответственно выше защитной втулки 16. Диаметр и количество отверстий 17 являются расчетными величинами. Выше отверстий 17 на валу 8 установлен шнек 18 с левым направлением спирали, создающий при вращении вала нисходящий поток жидкости. Параметры шнека 18 являются расчетными, минимизирующими непроизводительные потери жидкости при удалении твердых частиц из входного модуля.
Входной модуль работает следующим образом. За счет создаваемого погружным ЭЦН градиента давления пластовая жидкость с частицами загрязнений всасывается в щель 6 между витками навитого профиля 5 щелевого фильтроэлемента 3. При этом жидкость освобождается от наиболее крупных частиц размером более ширины щели 6. Очищенная пластовая жидкость проходит в радиальном направлении сквозь входные отверстия 2 в перфорированном корпусе 1, отверстия в перфорированных трубках 10 и оказывается в кольцевом зазоре 11, где меняет направление движения на осевое. Жидкость течет вверх по кольцевому зазору 11 и сквозь отверстия 9 в промежуточных подшипниках 7. Отбойники 12 частично уменьшают попадание частиц в зазор между валом 8 и промежуточными подшипниками 7.
При движении в проточной части с изменяющимся поперечным сечением поток жидкости турбулизируется, при этом оставшиеся наиболее тяжелые частицы перемещаются к границам потока, прижимаются к стенкам, налипают на них и под действием гравитации осаждаются и накапливаются вблизи защитной втулки 16. При вращении вала 8 шнек 18 с левым направлением спирали создает нисходящий поток жидкости, направленный в противоположную сторону относительно основного восходящего потока во входном модуле и электроцентробежном насосе (не показан). Шнек 18 вытесняет жидкость с высоким содержанием механических примесей из входного модуля в скважину. Жидкость движется через нижние отверстия в нижней перфорированной трубке 10, нижние отверстия 2 в перфорированном корпусе 1 и отверстия 17 в нижней секции щелевого фильтроэлемента 3, примыкающей к основанию 15.
Основная часть жидкости из входного модуля попадает в насос, где приобретает необходимый напор и подается по НКТ на дневную поверхность.
Таким образом, в предлагаемом входном модуле уменьшается накопление механических примесей и устраняется износ подшипников, а также снижается количество попадающих в насосные секции примесей, благодаря чему уменьшается абразивный износ рабочих органов ЭЦН и повышается его эксплуатационная надежность.
название | год | авторы | номер документа |
---|---|---|---|
МОДУЛЬНАЯ СЕКЦИЯ ПОГРУЖНОГО ЦЕНТРОБЕЖНОГО ЭЛЕКТРОНАСОСА | 2006 |
|
RU2312253C2 |
МОДУЛЬНАЯ СЕКЦИЯ ПОГРУЖНОГО ЦЕНТРОБЕЖНОГО НАСОСА | 2014 |
|
RU2564744C1 |
МОДУЛЬНАЯ СЕКЦИЯ ФИЛЬТРА ПОГРУЖНОГО НАСОСНОГО АГРЕГАТА | 2012 |
|
RU2496027C1 |
ФИЛЬТРУЮЩИЙ ВХОДНОЙ МОДУЛЬ ПОГРУЖНОГО ЭЛЕКТРОЦЕНТРОБЕЖНОГО НАСОСА | 2022 |
|
RU2787438C1 |
ВХОДНОЙ ФИЛЬТР ПОГРУЖНОГО НАСОСА | 2019 |
|
RU2708475C1 |
СЕКЦИЯ ФИЛЬТРА БЛОЧНОГО ДЛЯ ПОГРУЖНОГО ЦЕНТРОБЕЖНОГО ЭЛЕКТРОНАСОСА | 2009 |
|
RU2392502C1 |
ВХОДНОЕ УСТРОЙСТВО ДЛЯ ОЧИСТКИ ПЛАСТОВОЙ ЖИДКОСТИ | 2018 |
|
RU2673493C1 |
МОДУЛЬ ФИЛЬТРАЦИИ САМООЧИЩАЮЩИЙСЯ | 2015 |
|
RU2585612C1 |
УСТРОЙСТВО ЗАЩИТЫ ПОДШИПНИКА ГАЗОСЕПАРАТОРА | 2020 |
|
RU2737042C1 |
ФИЛЬТРУЮЩИЙ МОДУЛЬ (ВАРИАНТЫ) | 2019 |
|
RU2705682C1 |
Изобретение относится к нефтяному машиностроению, в частности к насосам для подъема из скважин жидкости с повышенным содержанием песка и проппанта. Входной модуль состоит из перфорированного корпуса 1 с резьбовыми окончаниями, вокруг которого расположены секции щелевого фильтроэлемента 3. В корпусе 1 посредством промежуточных подшипников 7, отделенных друг от друга перфорированными трубками 10, установлен вал 8. Подшипники 7 снабжены отбойниками 12 с элементами подпружинивания. На резьбовые окончания корпуса 1 накручивается головка 13 с подшипником 14 и основание 15 с защитной втулкой 16. В секции щелевого фильтроэлемента 3, примыкающей к основанию 15, выполнены отверстия, 17 а на валу 8 на их уровне установлен шнек 18 с левым направлением спирали. Отверстия 17 в фильтроэлементе 3 расположены напротив нижних отверстий в нижней трубке 10. Изобретение направлено на повышение долговечности и надежности работы модуля и насоса при эксплуатации в скважинах с большим выносом механических примесей. 2 ил.
Входной модуль погружного электроцентробежного насоса, содержащий перфорированный корпус, расположенные вокруг него секции щелевого фильтроэлемента, вал, промежуточные подшипники, перфорированные трубки, отбойники с элементами подпружинивания, головку с подшипником и основание с защитной втулкой, отличающийся тем, что в секции щелевого фильтроэлемента, примыкающей к основанию, выполнены отверстия, а на валу на их уровне установлен шнек с левым направлением спирали, при этом отверстия расположены напротив нижних отверстий нижней перфорированной трубки.
МОДУЛЬНАЯ СЕКЦИЯ ПОГРУЖНОГО ЦЕНТРОБЕЖНОГО ЭЛЕКТРОНАСОСА | 2006 |
|
RU2312253C2 |
Дифференциальный магнитный усилитель напряжения | 1951 |
|
SU97778A1 |
СКВАЖИННЫЙ НАСОС | 2007 |
|
RU2353813C1 |
US 4249860 A, 10.02.1981 | |||
US 3521970 A, 28.07.1970. |
Авторы
Даты
2012-04-10—Публикация
2010-10-25—Подача