СПОСОБ УКРЕПЛЕНИЯ ОПОЛЗНЕОПАСНЫХ БОРТОВ КАРЬЕРОВ Российский патент 2012 года по МПК E02D17/20 

Описание патента на изобретение RU2449088C2

Изобретение относится к горному делу, а именно к обеспечению устойчивости бортов карьеров. Оно может быть использовано также для укрепления оползнеопасных склонов и отвалов.

Известен способ термического укрепления грунтов, преимущественно в виде свай. Сущность способа заключается в образовании лидерной скважины, размещение в ней излучателя СВЧ-энергии, тепловое воздействие на окружающий скважину массив грунта в два этапа в течение заданного времени, извлечение из скважины и заполнение ее материалом, причем на первом этапе теплового воздействия ведут нагревание грунта до температуры, равной 150°С, с наименьшей мощностью излучения (15-17.25 кВт), а на втором - при наибольшей мощности излучения (50 кВт) с нагревом грунта до температуры, равной 1000°С.

Во время теплового воздействия осуществляют возвратно-поступательное перемещение излучателя вдоль скважины.

Недостатком способа является сложность технологии упрочнения, требующая специального дорогостоящего оборудования, и высокая энергоемкость способа. Кроме того, необходимость возвратно-поступательного перемещения излучателя по скважине создает опасность его утраты при обрушении стенок скважины.

Известен также способ термического упрочнения грунта и устройство для его осуществления, который включает уплотнение грунта и его спекание путем воздействия электрическими разрядами между электродами. Спекание грунта осуществляют чередующимися разрядами на последовательных участках, ограниченных электродами.

Недостатками способа являются высокая энергоемкость, трудности в обеспечении равномерного обжига грунта по длине скважин и отсутствие возможности обеспечения контроля за качеством упрочнения грунта.

Известен способ плазменного упрочнения грунта. Сущность способа заключается в следующем: в скважине размещают плазмотрон и оплавляют им грунт дна скважины. Формирование ствола сваи осуществляют при подъеме плазмотрона со скоростью 1-3 м/ч. В местах формирования уширения ствола производят остановку плазмотрона на 5-7 мин.

Недостатком способа является сложность технологии упрочнения, требующая специального дорогостоящего оборудования, и высокая энергоемкость способа.

Известен способ упрочнения породного массива вокруг выработки, по которому предварительно определяют необходимую толщину упрочняемого слоя горных пород, которая зависит от степени их обводненности. Затем по контуру горной выработки бурят шпуры с перебуром за толщину упрочняемого слоя горных пород. Через шпуры осуществляют предварительный нагрев горной массы по всей длине шпуров при 100-200°С в течение 8 ч. После этого производят обжиг упрочняемого слоя в течение 19-20 ч с постоянным повышением температуры от 200 до 1100°С. При этом достигается необходимая прочность глинистой массы, которая преобразуется в упрочненный слой и обеспечивает долговечную устойчивость горных выработок.

Основными недостатком такого способа упрочнения в обводненных глиносодержащих породах борта карьера являются низкая прочность сцепления упрочняемого слоя в борту со смежными слоями, т.е. слабое взаимодействие пород, залегающих по обе стороны упрочняемого слоя.

Наиболее близким к изобретению по технической сущности и достигаемому результату, выбранным в качестве прототипа, является СПОСОБ ПРЕДУПРЕЖДЕНИЯ ОПОЛЗНЕЙ НА КАРЬЕРАХ по патенту №2030508, 6 E02D 17/20, 1995.03.10. Способ включает бурение скважин в массив, заряжение их ВВ, заполнение скважины закрепляющим раствором, забивку устья скважины пробкой, нагнетание закрепляющего раствора в трещины массива, образованные гидроразрывом пласта посредством взрывания ВВ, при этом в качестве закрепляющего раствора используется химический раствор.

Существенным недостатком данного способа является сложность технологии его осуществления, связанная с применением ВВ и трудностью контроля процесса упрочнения и оценки его эффективности. В результате чего создается угроза провоцирования оползня как на стадии гидроразрыва пласта, так и на стадии нагнетания химического раствора в массив.

Техническим результатом изобретения является упрощение технологии укрепления бортов карьеров на оползнеопасных участках и повышение эффективности укрепления за счет образования подпорных конструкций в борту на пути возможного оползня.

Технический результат достигается тем, что способ предупреждения оползней, включающий бурение скважин в массив, формирование трещин в глинистых породах борта карьера, заполнение скважин закрепляющим раствором, согласно изобретению предварительно определяют положение поверхности скольжения в толще глинистых пород, залегающих в борту карьера, и располагают уступы по высоте борта, скважины бурят с уступов борта под прямым углом к поверхности скольжения на глубину, превышающую расстояние до поверхности скольжения, а укрепление борта осуществляют путем формирования подпорных конструкций из упрочненных термообработкой глинистых пород, окружающих скважины, на участках пересечения их с поверхностью скольжения с последующим заполнением скважин закрепляющим составом, при этом в качестве закрепляющего состава используют цементно-песчаный раствор.

Также технический результат достигается тем, что при заполнении скважин закрепляющим раствором в них предварительно размещают арматуру.

Также технический результат достигается тем, что бурение скважин в неустойчивых породах производят с обсадкой трубами, материал которых используется в качестве дополнительного топлива при термообработке и обжиге неустойчивых пород.

Сущность изобретения заключается в предварительном определении поверхности скольжения в борту карьера на участке залегания оползнеопасных пород по известной методике, бурении с уступов борта скважин, пересекающих поверхность скольжения, с последующей их термообработкой и бетонированием. В результате на пути возможного оползня образуются достаточно прочные подпорные конструкции из бетонных (железобетонных) свай и термоупрочненных пород.

Укрепление борта на участке борта с неустойчивыми породами начинают с бурения скважин по линии сопряжении уступов с откосами перпендикулярно поверхности скольжения с перебуром ее на глубину, превышающую расстояние до линии скольжения. Далее прилегающие к скважинам породы на участках, расположенных по обе стороны точки пересечения расчетной линии скольжения, подвергают термообработке с помощью термогазогенераторов. На первом этапе термообработку производят при нагревании пород до 200°С. Она направлена на высушивание увлажненных глинистых пород вокруг скважин и развитие в них процесса трещинообразования.

При необходимости для создания более жестких конструкций на втором этапе термообработку производят до спекания пород при температуре от 800 до 1300°С.

Прочность этих конструкций в дальнейшем может быть еще более повышена путем заполнения скважин цементно-песчаным раствором, а также установкой в них арматуры.

Способ осуществляется следующим образом.

По данным геологической разведки устанавливают расположение и мощность залегания глинистых пород 1 (фиг.1) в борту карьера, анализируют физико-механические свойства пород, при этом дополнительно испытывают породы на обводненность, теплопроводность, определяют температуру спекаемости.

При проектировании на участке залегания глинистых пород 1 в борту карьера с помощью известной методики расчета устанавливают расположение поверхности скольжения 2 в их толще и определяют места формирования уступов 3 в борту.

После формирования уступов на участках сопряжения откосов с площадками уступов 3 бурят ряды скважин 4 под прямым углом к линии поверхности скольжения 2 с перебуром за линию на расстояние, равное примерно ширине площадке уступа 3.

По окончании бурения на уступах рядов скважин в них размещают термогазогенераторы 5 и инициируют (электрическим, ударным или огневым способом) процесс термообработки пород 1. В зависимости от способа термообработки (например, с помощью термитного топлива) устья скважин заполняют забойкой. При этом расстояние между скважинами 4 в рядах (а) принимают по условию смыкания зон упрочнения (спекания) 6, образующихся у скважин после их термообработки (см. фиг.1). Этот параметр определяют, исходя из результатов испытаний пород при действии на них высоких температур и характеристик применяемого термитного топлива. Для большинства глинистых и глиносодержащих грунтов и пород этот параметр составляет от 1 до 2 м.

Термообработку скважин проводят с помощью термогазогенераторов (ТГГ) в два этапа. На первом этапе в скважинах размешают ТГГ, с помощью которых породы нагревают от 100 до 200°С в течение 8 часов. На втором этапе в скважинах размещают ТГГ с большим суммарным количеством выделяемого тепла и производят обжиг пород до спекания вокруг скважин при температуре от 800 до 1300°С в течение 2 часов.

В состав ТГГ (фиг.2) входит сгораемый корпус, например на основе полипропиленовой трубы, внутри которого находится термитный состав с инициатором.

Основной частью ТГГ является набор шашек термитного состава 9 в полипропиленовом корпусе 13. Нижний торец корпуса представлен дном 11, на который навинчен направляющий конус 10. На верхнем торце расположен гермоввод 12 с инициатором 8. Дно, шашки и гермоввод закреплены на стержне 14 гайкой 16. Дно и гермоввод герметизируются уплотнительными резиновыми прокладками 15 и 17

Запуск ТГГ осуществляется подачей напряжения постоянного тока на инициатор, который запускает экзотермическую реакцию разложения термитного состава с выделением тепла и газа.

ТГГ является изделием одноразового применения.

Заполнение скважин цементно-песчаным раствором производят при остывании пород до 40°С.

В результате на пути оползня в плоскостях, перпендикулярных плоскости скольжения, в борту карьера создают подпорные конструкция из упрочненных пород и бетона.

Для контроля за уровнем температуры в массиве между скважинами, смыканием зон упрочнения пород между ними и прочностью пород в зонах используют резервные скважины 7 (фиг.1), которые служат также для откачки воды, вытесняемой из пород при термообработке. В дальнейшем их также заполняют закрепляющим составом и используют в качестве дополнительного усиления подпорной конструкции в борту. Контроль за уровнем температуры производят с помощью термопар. Качество упрочнения пород определяют экспресс-методом по вдавливанию пуансонов в стенки скважин.

Повышения прочности таких конструкций на срез достигают путем размещения в скважинах высокопрочной арматуры.

При повышенной пластичности пород, при которых стенки скважин становятся неустойчивыми в процессе бурения, бурение скважин производят с обсадкой скважин трубами из материала, который при термообработке скважин сгорает, может быть использован в качестве дополнительного топлива или упрочняющего материала-заполнителя трещин.

Похожие патенты RU2449088C2

название год авторы номер документа
СПОСОБ КРЕПЛЕНИЯ ГОРНЫХ ВЫРАБОТОК С ТЕРМОУПРОЧНЕНИЕМ НЕУСТОЙЧИВЫХ ПОРОД 2009
  • Смирнов Владимир Алексеевич
  • Работа Эдуард Николаевич
  • Гончаров Евгений Владимирович
  • Веричев Елисей Михайлович
  • Стратов Валерий Григорьевич
  • Протосеня Анатолий Григорьевич
  • Шванкин Михаил Васильевич
  • Никулин Михаил Викторович
  • Ларионов Роман Игоревич
RU2405938C1
СПОСОБ КРЕПЛЕНИЯ ПОЧВЫ ГОРНЫХ ВЫРАБОТОК 2011
  • Работа Эдуард Николаевич
  • Смирнов Владимир Алексеевич
  • Гончаров Евгений Владимирович
  • Гореликов Владимир Георгиевич
  • Шванкин Михаил Васильевич
  • Дмитриев Дмитрий Валерьевич
  • Работа Александр Эдуардович
RU2459907C1
СПОСОБ КРЕПЛЕНИЯ ПОЧВЫ ГОРНЫХ ВЫРАБОТОК 2011
  • Работа Эдуард Николаевич
  • Смирнов Владимир Алексеевич
  • Гончаров Евгений Владимирович
  • Гореликов Владимир Георгиевич
  • Шванкин Михаил Васильевич
  • Веричев Елисей Михайлович
  • Работа Александр Эдуардович
RU2468207C1
СПОСОБ СОЗДАНИЯ РАЗГРУЗОЧНЫХ ЩЕЛЕЙ В УДАРООПАСНОМ ГОРНОМ МАССИВЕ ТЕРМООБРАБОТКОЙ СКВАЖИН 2012
  • Смирнов Владимир Алексеевич
  • Работа Эдуард Николаевич
  • Гончаров Евгений Владимирович
  • Шванкин Михаил Васильевич
  • Мулев Сергей Николаевич
RU2493368C1
СПОСОБ ПРЕДУПРЕЖДЕНИЯ ОПОЛЗНЕЙ НА КАРЬЕРАХ 1991
  • Хасаев А.М.
  • Азизов А.М.
  • Исаева З.Д.
  • Мурадов Р.Б.
  • Годжаманов М.Г.
RU2030508C1
СПОСОБ ОЦЕНКИ УСТОЙЧИВОСТИ БОРТА КАРЬЕРА 2003
  • Простов С.М.
  • Бахаева С.П.
  • Серегин Е.А.
  • Костюков Е.В.
  • Демьянов В.В.
  • Ермошкин В.В.
RU2239064C1
СПОСОБ ПОВЫШЕНИЯ УСТОЙЧИВОСТИ УСТУПОВ БОРТОВ КАРЬЕРОВ 2003
  • Простов С.М.
  • Бахаева С.П.
  • Серегин Е.А.
  • Костюков Е.В.
  • Ермошкин В.В.
RU2237165C1
ПРОТИВООПОЛЗНЕВАЯ КОНСТРУКЦИЯ ДЛЯ СТАБИЛИЗАЦИИ СКЛОНОВ И ОТКОСОВ ЗЕМЛЯНЫХ СООРУЖЕНИЙ 2002
  • Гончарук С.М.
  • Жданова С.М.
  • Шильникова Г.П.
  • Воронин В.В.
  • Ли В.М.
RU2229560C2
Способ оценки устойчивости массива горных пород борта карьера 1982
  • Соболев Евгений Григорьевич
  • Бедарев Виталий Васильевич
  • Вербин Владимир Петрович
  • Клименко Николай Тихонович
SU1064000A1
СПОСОБ УКРЕПЛЕНИЯ ОПОЛЗНЕОПАСНОГО МАССИВА СКЛОНА 2009
  • Постоев Герман Павлович
  • Казеев Андрей Игоревич
RU2413056C1

Иллюстрации к изобретению RU 2 449 088 C2

Реферат патента 2012 года СПОСОБ УКРЕПЛЕНИЯ ОПОЛЗНЕОПАСНЫХ БОРТОВ КАРЬЕРОВ

Изобретение относится к горному делу, а именно к обеспечению устойчивости оползнеопасных бортов карьеров, склонов и отвалов. Способ укрепления оползнеопасных бортов карьеров включает бурение скважин в массив, формирование трещин в глинистых породах борта карьера, заполнение скважин закрепляющим раствором. Предварительно определяют положение поверхности скольжения в толще глинистых пород, залегающих в борту карьера, и располагают уступы по высоте борта. Скважины бурят с уступов борта под прямым углом к поверхности скольжения на глубину, превышающую расстояние до поверхности скольжения. Укрепление борта осуществляют путем формирования подпорных конструкций из упрочненных термообработкой глинистых пород, окружающих скважины, на участках пересечения их с поверхностью скольжения с последующим заполнением скважин закрепляющим составом. В качестве закрепляющего состава используют цементно-песчаный раствор. Технический результат состоит в повышении эффективности укрепления, упрощении технологии укрепления бортов карьеров на оползневых участках. 2 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 449 088 C2

1. Способ укрепления оползнеопасных бортов карьеров, включающий бурение скважин в массив, формирование трещин в глинистых породах борта карьера, заполнение скважин закрепляющим раствором, отличающийся тем, что предварительно определяют положение поверхности скольжения в толще глинистых пород, залегающих в борту карьера, и располагают уступы по высоте борта, скважины бурят с уступов борта под прямым углом к поверхности скольжения на глубину, превышающую расстояние до поверхности скольжения, а укрепление борта осуществляют путем формирования подпорных конструкций из упрочненных термообработкой глинистых пород, окружающих скважины, на участках пересечения их с поверхностью скольжения с последующим заполнением скважин закрепляющим составом, при этом в качестве закрепляющего состава используют цементно-песчаный раствор.

2. Способ по п.1, отличающийся тем, что при заполнении скважин закрепляющим раствором в них предварительно размещают арматуру.

3. Способ по п.1, отличающийся тем, что бурение скважин в неустойчивых породах производят с обсадкой трубами, материал которых используется в качестве дополнительного топлива при термообработке и обжиге неустойчивых пород.

Документы, цитированные в отчете о поиске Патент 2012 года RU2449088C2

СПОСОБ ПРЕДУПРЕЖДЕНИЯ ОПОЛЗНЕЙ НА КАРЬЕРАХ 1991
  • Хасаев А.М.
  • Азизов А.М.
  • Исаева З.Д.
  • Мурадов Р.Б.
  • Годжаманов М.Г.
RU2030508C1
Способ укрепления откосов 1988
  • Николашин Юрий Михайлович
  • Будков Вячеслав Петрович
  • Ратушный Вячеслав Михайлович
  • Холодарь Борис Григорьевич
SU1587138A1
СПОСОБ ЗАКРЕПЛЕНИЯ ОПОЛЗНЕВЫХ СКЛОНОВ 2004
  • Осипов Виктор Иванович
  • Филимонов Сергей Дмитриевич
  • Снежкин Борис Алексеевич
RU2275467C1
СПОСОБ УКРЕПЛЕНИЯ ОПОЛЗНЕВОГО СКЛОНА 1998
  • Федоров В.М.
  • Нестеренко Е.С.
  • Шевченко К.И.
RU2171875C2
Способ поддержания горных выработок в глинистых породах 1986
  • Пономаренко Павел Иванович
  • Дук Виктор Петрович
  • Иващенко Наталия Георгиевна
SU1430541A1
Устройство для разрушения горных пород 1988
  • Калинин Михаил Матвеевич
  • Полежаев Владимир Петрович
  • Шмакин Иван Георгиевич
  • Жучкова Нелли Григорьевна
  • Бреннер Владимир Александрович
SU1587187A1

RU 2 449 088 C2

Авторы

Смирнов Владимир Алексеевич

Работа Эдуард Николаевич

Гончаров Евгений Владимирович

Баранов Владимир Сергеевич

Дмитриев Дмитрий Валерьевич

Шванкин Михаил Васильевич

Никулин Михаил Викторович

Минин Юрий Яковлевич

Работа Александр Эдуардович

Даты

2012-04-27Публикация

2010-04-28Подача