УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АЛЬБЕДО ДЕЯТЕЛЬНОЙ ПОВЕРХНОСТИ МАТЕРИАЛА Российский патент 2012 года по МПК G01J5/12 

Описание патента на изобретение RU2456558C1

Устройство может быть использовано в сельском хозяйстве, метеорологии, климатологии, строительной промышленности, а также в любой отрасли, где необходима информация об отражательных и поглощательных способностях поверхностей материалов.

Известен альбедометр Калитина в комплекте с гальванометром или потенциометром для определения альбедо деятельной поверхности материала [А.Г.Гиндоян. Пособие по обследованию строительных конструкций зданий. - М.: АО «ЦНИИпромзданий», 1997. - С.100-101]. Основным конструктивным элементом устройства является пиранометр под полусферическим стеклянным колпаком, закрепленный на трубке с рукояткой для вращения прибора. При радиационных наблюдениях альбедометр устанавливают таким образом, чтобы приемная поверхность пиранометра была параллельна поверхности материала. Методика измерения сводится к последовательному определению падающей и отраженной радиации. После замеров падающей радиации альбедометр переворачивают на 180° и производят замер отраженной радиации. По полученным данным, расчетным способом определяют альбедо поверхности исследуемого материала.

Использование одного пиранометра для определения альбедо поверхности материала нарушает синхронность измерений входных и выходных потоков лучистой энергии. Применение одной приемной поверхности для последовательного определения падающего и отраженного лучистого потока также требует дополнительного времени для снятия эффекта памяти прибора между первым и вторым измерениями.

Наиболее близким изобретением, которое лежит в основе заявленного устройства, является измерительная система, состоящая из двух идентичных тепловоспринимающих элементов - пиранометров [Е.В.Шеин. Курс физики почв. - М.: МГУ, 2005. - С.334-335]. Каждый пиранометр содержит участки черных и белых тел, которые соответственно поглощают и отражают потоки инфракрасного излучения. К черным и белам телам пиранометра подведены концы дифференциальных термопар, соединяющих элементы устройства с микроамперметром. За счет разности нагрева черных и белых участков в цепи возникает ток, который измеряют микроамперметром. Ток будет тем больше, чем больше разность температур между черной и белой поверхностью, которая в свою очередь будет определять интенсивность лучистого потока. Приемная поверхность одного пиранометра обращена к источнику инфракрасного излучения и регистрирует величину поступающей лучистой энергии, а приемная поверхность другого - к поверхности исследуемого материала и воспринимает идущий от материала отраженный лучистый поток. Через соотношение полученных потоков определяют альбедо деятельной поверхности материала.

Недостатком прототипа является применение черных и белых тел в составе пиранометра для нахождения альбедо деятельной поверхности материала. Абсолютно черных и белых тел в природе не существует, и поэтому как черное, так и белое тело пиранометра вносят погрешности при измерении поступающей и отраженной радиации.

Целью изобретения является упрощение конструкции устройства и повышение точности измерений альбедо деятельной поверхности материала.

Поставленная цель достигается применением устройства для определения альбедо деятельной поверхности материала, состоящего из двух идентичных тепловоспринимающих элементов и термопар. Приемная поверхность одного тепловоспринимающего элемента направлена в сторону источника инфракрасного излучения, приемная поверхность другого - к поверхности исследуемого материала для поглощения лучистых потоков. Приемные поверхности и боковые грани металлических пластин тепловоспринимающих элементов покрыты черной влагонепроницаемой краской. Поверхности пластин, противоположные приемным поверхностям (задние поверхности), закрыты слоем теплогидроизоляции со светоотражательной пленкой. В центральной части металлических пластин закреплены спаи термопар, регистрирующие нагрев пластин во времени, по которому рассчитывают альбедо деятельной поверхности материала согласно формуле:

где qinf и qref - потоки теплоты соответственно от источника инфракрасного излучения и исследуемого материала; t0 и t1 - температуры пластин, обращенных приемными поверхностями соответственно к источнику инфракрасного излучения и исследуемому материалу; τ - время.

На фиг.1 показана принципиальная схема тепловоспринимающего элемента заявленного устройства.

На фиг.2 показана схема распределения лучистых потоков.

На фиг.3 показан режим нагрева металлических пластин под воздействием лучистых потоков.

На фиг.4 показан режим нагрева металлических пластин под воздействием лучистых потоков (аппроксимация).

На фиг.5 показано заявленное устройство в оригинале.

Устройство для определения альбедо деятельной поверхности материала включает в себя два идентичных тепловоспринимающих элемента (фиг.1). Тепловоспринимающий элемент состоит из гладкой металлической пластины 1, приемная поверхность и боковые грани которой покрыты черной влагонепроницаемой краской 2. Задняя поверхность пластины 1 закрыта слоем теплогидроизоляции 3 со светоотражательной пленкой 4. В центральной части пластины 1 закреплен спай термопары 5, который регистрирует нагрев пластины во времени. Приемные поверхности пластин тепловоспринимающих элементов установлены на одном уровне, параллельно поверхности исследуемого материала. Тепловоспринимающие элементы расположены на расстоянии между источником излучения и материалом.

Устройство работает следующим образом.

Приемные поверхности тепловоспринимающих элементов соответственно воспринимают падающий qinf от источника инфракрасного излучения и отраженный qref от исследуемого материала лучистый тепловой поток (фиг.2). Благодаря черной влагонепроницаемой краске 2 приемная поверхность поглощает поток лучистой энергии без отражений. Слой теплогидроизоляции 3 со светоотражательной пленкой 4 на задней поверхности металлической пластины 1 предотвращает нагрев последней через заднюю поверхность. Под воздействием источника инфракрасного излучения пластины нагреваются: первая пластина - за счет падающего на приемную поверхность прямого лучистого потока плотностью qinf, а вторая - за счет отраженного от поверхности материала инфракрасного излучения плотностью qref. Нагрев металлической пластины 1 тепловоспринимающего элемента регистрирует термопара 5, которая передает информацию на компьютер (условно не показан) через аналого-цифровой преобразователь (АЦП) и конвертер (условно не показаны). По соотношению скоростей изменения температур пластин в режиме нагрева рассчитывают альбедо деятельной поверхности материала согласно формуле (1).

Достоинством заявленного изобретения является простота и компактность конструкции, так как согласно формуле (1) для определения альбедо деятельной поверхности материала требуется только регистрация нагрева пластин через приемные поверхности, покрытые черной влагонепроницаемой краской. Использование заявленного устройства повышает точность измерений благодаря покрытию задних поверхностей пластин слоем теплогидроизоляции со светоотражательной пленкой.

Пример конкретного применения устройства

Определим альбедо деятельной поверхности материала на примере фрезерного торфа в лабораторных условиях. В качестве источника инфракрасного излучения использован электрический инфракрасный излучатель суммарной мощностью 3 кВт, расположенный на расстоянии 2,5 м от поверхности торфяной почвы. Период нагрева алюминиевых пластин заявленного устройства составил τht=1800 с. Регистрация температурных данных с устройства произведена с дискретностью измерений χ=30 с.

Температурные поля алюминиевых пластин по данным хромель-алюмелевых термопар представлены на фиг.3.

Нагрев пластин устройства, обращенных приемной поверхностью соответственно к источнику инфракрасного излучения t0 и торфу t1, описывают графики линейных функций на фиг.4, °С:

Тогда альбедо деятельной поверхности фрезерного торфа А с учетом формулы (1) составит:

Похожие патенты RU2456558C1

название год авторы номер документа
ПОГЛОЩАЮЩИЙ ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ СОСТАВ ДЛЯ ПРОПИТКИ ТЕКСТИЛЬНЫХ ИЗДЕЛИЙ 2013
  • Чистяков Савва Сергеевич
RU2548475C1
Поглощающий инфракрасное излучение гомогенный состав для обработки текстильных изделий 2017
  • Чистяков Савва Сергеевич
RU2664340C1
СПОСОБ ОПРЕДЕЛЕНИЯ АЛЬБЕДО (ВАРИАНТЫ) 1998
  • Селиванов С.Н.
RU2145075C1
СПОСОБ ОПРЕДЕЛЕНИЯ АЛЬБЕДО (ВАРИАНТЫ) 1998
  • Селиванов С.Н.
RU2145074C1
Состав, отражающий и изолирующий инфракрасное излучение, для нанесения на поверхность текстильных изделий 2014
  • Чистяков Сергей Анатольевич
  • Чистяков Савва Сергеевич
RU2618967C2
СПОСОБ ОПРЕДЕЛЕНИЯ АЛЬБЕДО (ВАРИАНТЫ) 1998
  • Селиванов С.Н.
RU2145076C1
Термоэлектрический пиргеометр 1938
  • Кислов В.П.
SU56926A1
СПОСОБ ОПРЕДЕЛЕНИЯ АЛЬБЕДО 1998
  • Селиванов С.Н.
RU2145077C1
Способ определения альбедо поверхности 2016
  • Журавский Данила Михайлович
RU2628991C1
УСТРОЙСТВО И СПОСОБ КОНТРОЛЯ ЛУЧИСТЫХ ПОТОКОВ ПРИ НАЗЕМНЫХ ТЕПЛОВАКУУМНЫХ ИСПЫТАНИЯХ КОСМИЧЕСКИХ ОБЪЕКТОВ 2010
  • Корнилов Владимир Александрович
RU2449263C1

Иллюстрации к изобретению RU 2 456 558 C1

Реферат патента 2012 года УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АЛЬБЕДО ДЕЯТЕЛЬНОЙ ПОВЕРХНОСТИ МАТЕРИАЛА

Изобретение является универсальным устройством для определения альбедо деятельной поверхности материалов любого типа. Устройство включает в себя два идентичных тепловоспринимающих элемента. Последние состоят из гладких металлических пластин, приемная поверхность и боковые грани которых покрыты черной влагонепроницаемой краской. Задняя поверхность каждой пластины закрыта слоем теплогидроизоляции со светоотражательной пленкой. В центральной части металлических пластин закреплены спаи термопар, которые регистрируют температурное состояние каждой пластины при нагреве под воздействием источника инфракрасного излучения и отражающего лучистые потоки материала. По соотношению интенсивности нагрева пластин во времени рассчитывают альбедо деятельной поверхности исследуемого материала. Техническим результатом изобретения является упрощение конструкции устройства и повышение точности измерений альбедо деятельной поверхности материала. 5 ил.

Формула изобретения RU 2 456 558 C1

Устройство для определения альбедо деятельной поверхности материала, состоящее из двух идентичных тепловоспринимающих элементов, приемные поверхности которых разнонаправлено обращены в сторону источника инфракрасного излучения и к поверхности исследуемого материала для поглощения лучистых потоков, и термопар, отличающееся тем, что приемные поверхности и боковые грани металлических пластин тепловоспринимающих элементов покрыты черной влагонепроницаемой краской, поверхности пластин, противоположные приемным поверхностям, закрыты слоем теплогидроизоляции со светоотражательной пленкой, термопары регистрируют нагрев пластин во времени, по которому рассчитывают альбедо деятельной поверхности материала, согласно формуле

где t0 и t1 - температуры пластин, обращенных приемными поверхностями соответственно к источнику инфракрасного излучения и исследуемому материалу; τ - время.

Документы, цитированные в отчете о поиске Патент 2012 года RU2456558C1

CN 101915660 A, 15.12.2010
СПОСОБ ОПРЕДЕЛЕНИЯ АЛЬБЕДО 1998
  • Селиванов С.Н.
RU2145077C1
Калориметр 1981
  • Филиппов Владимир Александрович
SU1030756A1
US 5146097 A, 08.09.1992.

RU 2 456 558 C1

Авторы

Игонин Владимир Иванович

Павлов Михаил Васильевич

Карпов Денис Федорович

Даты

2012-07-20Публикация

2011-03-11Подача