Изобретение относится к области измерения газа и жидкости в газожидкостной смеси, поступающей из скважин. Оно может быть использовано в нефтегазодобывающих предприятиях для оперативного контроля за количеством извлекаемого вместе с нефтью газа и регулирования процесса выработки запасов нефти и газа.
Известны способы определения газового фактора нефти путем отбора всей добываемой продукции либо ее части за определенный промежуток времени, разделения продукции на фазы и последующего измерения объема фаз. Эти способы трудоемкие, капиталоемкие и недостаточно точны по причине невозможности полного разделения фаз.
Известны способы повышения точности измерения дебита и газового фактора в критическом режиме течения [RU 2091579 C1, E21B 47/10, 1997], групповыми замерными установками АГЗУ без применения газовых расходомеров [RU 2355883 C2, E21B 47/10, 2007].
Недостаток способов состоит в том, что их применение на скважинах с давлением на приеме насоса ниже давления насыщения и периодическими залповыми сбросами в сборный коллектор газа, поступающего в затрубное пространство, приводит к значительной погрешности измерений. Если замер совпадает по времени с выбросом накопленного газа в затрубном пространстве, то результаты замера завышают величину газового фактора и количество извлекаемого газа. Если замер проходил в период накопления в затрубном пространстве поступающего с забоя газа, происходит занижение газового фактора. По имеющимся результатам измерений сертифицированными средствами величина газовых факторов в серии замеров отличается в разы, а в некоторых случаях на порядок.
Наиболее близким к предлагаемому техническому решению является способ определения газового фактора нефти [RU 2348805 C1, E21B 47/10, 2007], включающий измерение плотности разгазированной нефти, коэффициента растворимости газа и поправочного коэффициента к нему, уровня нефти и давления в затрубном пространстве, а газовый фактор определяют из условия равенства объема выделившегося газа объему газа в затрубном пространстве, приведенному к стандартным условиям.
Основным недостатком прототипа является узкая область его применения. Способ применим на скважинах, работающих при давлении на приеме насоса выше давления насыщения.
В последние годы значительное распространение получила эксплуатация добывающих скважин на форсированных режимах, когда забойное давление или давление на приеме насоса меньше давления насыщения. В этом случае в процессе разгазирования нефти газ поступает в затрубное пространство, повышая давление и снижая динамический уровень вплоть до глубины спуска насоса, что приводит к его выходу из строя. Чтобы избежать потери насоса, поступающий газ в периодическом режиме отводится из затруба в сборный коллектор. В результате необходимое условие применимости прототипа нарушается.
Определение газового фактора и отборов газа на скважинах с давлением на приеме насоса ниже давления насыщения, работающих в режиме накопления и сброса газа из затрубного пространства, представляет особо сложную проблему. Причина сложности состоит как в том, что все существующие методы и средства измерений сами работают в периодическом режиме, так и в том, что по мере накопления газа растет затрубное давление и динамический уровень. Соответственно, замеренное по прототипу значение газового фактора завышается.
В частности, в период накопления выделяющегося газа в затрубе исследуемой скважины динамический уровень вырос до 1338 м, давление до 3,65 МПа. По прототипу газовый фактор определяется величиной 48,3 м3/м3.
Необходим другой способ определения дебита газа и газового фактора, учитывающий физику процесса сепарации в скважине.
Задачей, стоящей перед изобретением, является повышение точности способа и обеспечение возможности определения дебита газа и газового фактора в скважинах с давлением на приеме насоса ниже давления насыщения.
Поставленная задача решается тем, что при определении дебита газа и газового фактора продукции скважин, работающих при давлении на приеме насоса ниже давления насыщения, включающем измерение затрубного давления и динамического уровня жидкости в затрубном пространстве, плотности нефти при стандартных условиях, температуры и коэффициента растворимости газа с поправочным коэффициентом, дополнительно измеряют дебит скважины по жидкости, обводненность, изменение затрубного давления и динамического уровня при закрытой затрубной задвижке, время измерения, а дебит газа и газовый фактор определяют по изменению объема газа в затрубном пространстве исходя из условия равенства давления насыщения по всему уровню приема насоса, причем дебит газа определяют, используя зависимость:
Qг=ΔG·Ps·Qн=Qкг+ΔGРТ·P·Qн, где:
ΔGPT - коэффициент растворимости газа в нефти при условии P и Т;
Ps - давление насыщения;
Qкг - количество свободного газа;
Р - давление на границе зоны питания насоса;
Qн - дебит скважины по нефти,
а искомое значение газового фактора, используя зависимость:
, где
ΔG - коэффициент растворимости газа в нефти;
Gзат - величина прироста газового фактора нефти;
Sзат - площадь сечения затрубного пространства;
Sk - площадь сечения колонны.
Известно, что объем выделившегося газа при забойных температуре, давлении P и объеме нефти определяется коэффициентом растворимости и давлением насыщения Рs по уравнению:
В выражении (1) неизвестными членами уравнения является давление насыщения и частично количество свободного газа Qкг. Для действующей скважины Qн представляет собой дебит скважины по нефти. P - давление на границе зоны приема насоса определяется экспериментально либо широко используемыми методами расчета.
Количество газа, поступающего в затрубное пространство при его накоплении, определяется экспериментально путем измерения изменения динамического уровня и затрубного давления в установленный интервал времени.
На момент начала измерения динамики затрубного давления и динамического уровня объем свободного газа в затрубном пространстве определяется выражением:
где:
P1 и P0 - текущее и стандартное давления;
T1 и Т0 - текущая температура в затрубном пространстве и при стандартных условиях;
H1 - динамический уровень, м;
Sзат - площадь сечения затрубного пространства, м2;
z - коэффициент сверхсжимаемости газа при давлении и температуре в затрубе.
Проведем повторный замер динамического уровня Нi и давления Рiзат за время Δti. Очевидно, что в каждый момент времени ti объем газа в затрубном пространстве, приведенный к стандартным условиям, определяется выражением:
При этом разница в объемах газа в затрубном пространстве за время Δti соответствует объему поступившего газа. Разделив эту величину на Δti и умножив на соответствующее время в сутках, получим суточный приток (дебит) газа по затрубу Qгзат.
где:
Δti - время замера в минутах;
1440 - число минут в сутках.
Делением суточного поступления газа в затрубное пространство (4) на дебит скважины по нефти Qн определяется величина прироста газового фактора нефти Gзат:
В соответствии с законами физики в сообщающихся сосудах НКТ - забой - затрубное пространство давление и плотность флюида в зоне контакта, т.е. на границе зоны приема насоса, одинаковы по всей площади сечения обсадной колонны. Практически в зоне приема насоса имеет место кипящий водо-нефте-газовый слой одинаковой плотности. Следовательно, общий объем газа, приведенный к стандартным условиям в зоне кипящего слоя, можно определить выражением:
Решая совместно (1) и (6), получим уравнение для определения дебита газа
Искомое значение газового фактора определяется выражением:
В качестве примера определим дебит газа и газовый фактор нефти исследуемой скважины по варианту периодически открытого режима работы затрубного пространства.
Давление на границе зоны питания насоса определим как сумму давлений: затрубного Рзат, давления газового столба ΔРгзат и давления столба нефти ΔРнзат от динамического уровня до границы зоны питания насоса.
Начальное затрубное давление Рзат=0,31 МПа.
Давление столба газа H1=914 м определяется из выражения:
Давление нефти, при плотности 885 м3/т, в затрубном пространстве от H1 до зоны приема Hнас+20 м определяется выражением:
Определяется давление на границе зоны питания насоса по выражению (9):
P=0,31+0,036+4,778=5,12 МПа.
Определяется расход газа по затрубу (4) при температуре 5°C, с площадью сечения обсадной колонны 0,0167 м2, затрубного пространства 0,0112 м2 при изменении затрубного давления до 0,39 МПа, динамического уровня до 948 м за время 180 минут, растворимость газа в нефти 1,69 МПа-1, поправочный коэффициент растворимости на температуру и давление 1,05:
.
Зная давление (9), определяется дебит газа и газовый фактор нефти по выражениям (7) и (8):
.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕБИТА ГАЗА И ГАЗОВОГО ФАКТОРА ПРОДУКЦИИ СКВАЖИН | 2010 |
|
RU2459953C1 |
Способ определения давления насыщения добываемой продукции газом | 2021 |
|
RU2752637C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ГАЗОВОГО ФАКТОРА НЕФТИ | 2007 |
|
RU2348805C1 |
СПОСОБ ЭКСПЛУАТАЦИИ НЕФТЯНЫХ СКВАЖИН | 1998 |
|
RU2151276C1 |
Способ добычи нефти с повышенным содержанием газа из скважин и устройство для его осуществления | 2017 |
|
RU2667182C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕБИТА ПРОДУКЦИИ СКВАЖИН | 2006 |
|
RU2325520C2 |
СПОСОБ ОПТИМИЗАЦИИ РАБОТЫ НЕФТЯНОЙ СКВАЖИНЫ С ОДНОВРЕМЕННЫМ ИЗМЕРЕНИЕМ ЕЕ ДЕБИТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2318988C2 |
СПОСОБ УПРАВЛЕНИЯ РАБОТОЙ НАСОСНОЙ СКВАЖИНЫ | 1993 |
|
RU2074955C1 |
СПОСОБ ПЕРЕВОДА СКВАЖИН НА ОПТИМАЛЬНО ЭФФЕКТИВНЫЙ РЕЖИМ ЭКСПЛУАТАЦИИ | 2005 |
|
RU2289019C1 |
СПОСОБ РАЗДЕЛЬНОГО ПОДЪЕМА ПРОДУКЦИИ ДОБЫВАЮЩИХ СКВАЖИН | 1992 |
|
RU2054528C1 |
Изобретение относится к области измерения газа и жидкости в газожидкостной смеси, поступающей из скважин. Способ определения дебита газа и газового фактора продукции скважин, работающих при давлении на приеме насоса ниже давления насыщения, включает измерение затрубного давления и динамического уровня жидкости в затрубном пространстве, плотности нефти при стандартных условиях, температуры и коэффициента растворимости газа с поправочным коэффициентом. Измеряют дебит скважины по жидкости, обводненность, изменение затрубного давления и динамического уровня при закрытой затрубной задвижке, время измерения. Дебит газа и газовый фактор определяют по изменению объема газа в затрубном пространстве исходя из условия равенства давления насыщения по всему уровню приема насоса. Причем дебит газа и искомое значение газового фактора определяют по приведенным математическим выражениям. Техническим результатом является повышение точности и обеспечение возможности определения дебита газа и газового фактора в скважинах с давлением на приеме насоса ниже давления насыщения.
Способ определения дебита газа и газового фактора продукции скважин, работающих при давлении на приеме насоса ниже давления насыщения, включающий измерение затрубного давления и динамического уровня жидкости в затрубном пространстве, плотность нефти при стандартных условиях, температуру и коэффициент растворимости газа с поправочным коэффициентом, отличающийся тем, что измеряют дебит скважины по жидкости, обводненность, изменение затрубного давления и динамического уровня при закрытой затрубной задвижке, время измерения, а дебит газа и газовый фактор определяют по изменению объема газа в затрубном пространстве исходя из условия равенства давления насыщения по всему уровню приема, насоса, причем дебит газа определяют, используя зависимость:
Qг=ΔG·Ps·Qн=Qкг+ΔGРТ·P·Qн,
где ΔGРТ - коэффициент растворимости газа в нефти при условии P и T;
Ps - давление насыщения;
Qкг - количество свободного газа;
P - давление на границе зоны питания насоса;
Qн - дебит скважины по нефти,
а искомое значение газового фактора определяют, используя зависимость:
где ΔG - коэффициент растворимости газа в нефти;
Gзат - величина прироста газового фактора нефти;
Sзат - площадь сечения затрубного пространства;
Sk - площадь сечения колонны.
СПОСОБ ОПРЕДЕЛЕНИЯ ГАЗОВОГО ФАКТОРА НЕФТИ | 2007 |
|
RU2348805C1 |
СПОСОБ ИССЛЕДОВАНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН | 2009 |
|
RU2405933C1 |
RU 2112138 C1, 27.05.1998 | |||
СПОСОБ ОПТИМИЗАЦИИ РАБОТЫ НЕФТЯНОЙ СКВАЖИНЫ С ОДНОВРЕМЕННЫМ ИЗМЕРЕНИЕМ ЕЕ ДЕБИТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2318988C2 |
RU 2006135409 A, 20.04.2008 | |||
US 4150721 A, 20.09.1988 | |||
Р.Я.ИСАКОВИЧ и др | |||
Автоматизация производственных процессов нефтяной и газовой промышленности | |||
- М.: Недра, 1983, с.330-331. |
Авторы
Даты
2012-08-27—Публикация
2010-12-22—Подача