СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ Российский патент 2012 года по МПК G01V3/08 

Описание патента на изобретение RU2460097C2

Изобретение относится к электромагнитным методам исследования вертикального геоэлектрического сопротивления горных пород Земли. Область преимущественного использования предлагаемого технического решения - геологические, геоэкологические и другие изыскания.

Известен индукционный способ [1] определения электропроводности массива горных пород с применением разнесенных на дневной поверхности излучающего вертикального магнитного диполя и магнитоприемного устройства. В известном способе измеряют радиальную Br и вертикальную Bz, составляющие магнитной индукции с дальнейшим определением отношения Bz/Br. На заданной частоте со переменного магнитного поля, с расстоянием r между диполями и определенным отношением Bz/Br определяют электрическое сопротивление на частоте ω1. Аналогичные измерения осуществляют на частотах ω23<…<ωn, больших частоты ω1. Определяют электросопротивление горных пород на ряде частот ω1, ω2, ω3,…, ωn и относят к эффективным глубинам h1>h2>h3>…>hn проникновения электромагнитного поля. Известный способ имеет существенный недостаток, заключающийся в низкой точности определения удельного сопротивления, особенно при следующих условиях: 0.01Bz≤Br≤0.1Bz, т.е. при изучении высокоомных горных пород (например, скальных пород).

Известен также способ [2] низкочастотных индукционных зондирований при малых параметрах электромагнитного поля. В известном способе измеряют малую Bb и большую ось Ba эллипса поляризации электромагнитной индукции. Определяют отношение Bb/Ba<<1 и по величине этого отношения находят электрическое сопротивление горных пород на заданной частоте. Известный способ имеет существенный недостаток в низкой точности измерения Bb из-за неточности определения малой оси Bb в пространстве. Значительная погрешность при измерении Bb вносится первичным магнитным полем при повороте системы ортогональных датчиков в пространстве.

Известен также способ дистанционных зондирований с возбуждением вертикальным магнитным диполем, в котором датчик поля Br устанавливают по малой оси эллипса поляризации магнитного поля на измеряемой частоте [3], взятый нами в качестве способа - прототипа. Этот способ применим только при отношении Bz/Br, не превосходящим 10-30; при Bz/Br≥30 малый поворот датчиков вокруг горизонтальной оси приводит к значительной погрешности определения электросопротивления массива горных пород.

Цель изобретения - повышение точности определения электросопротивления путем создания модифицированной геометрии измерительной установки и методики измерений. Поставленная цель достигается тем, что в способе геоэлектроразведки, наряду с излучателем в виде вертикального магнитного диполя, возбуждается переменное электрическое поле с помощью заземленной линии АВ. Измерения проводятся фазочувствительным магнитоиндукционным датчиком Bz последовательно для магнитного и электрического типа возбуждающего поля, переключаемого с помощью коммутатора. Новизна предлагаемого способа усматривается в том, что измерения осуществляют только одной, а именно вертикальной составляющей магнитной индукции. В различных точках изучаемой компоненты вертикальность магнитоиндукционного датчика обеспечивается с высокой точностью.

Сравнение заявленного технического решения с прототипом позволило установить соответствие его критерию "новизна", так как оно не известно из уровня техники. Предложенный способ промышленно применим существующими средствами и соответствует критерию "изобретательский уровень", т.к. он явным образом не следует из уровня техники, при этом из последнего не выявлено каких-либо преобразований, характеризуемых отличительными от прототипа существенными признаками, направленных на достижение указанного технического результата. Таким образом, предложенное техническое решение соответствует установленным условиям патентоспособности изобретения.

На фиг.1 изображена структурная схема устройства, с помощью которого реализуют предлагаемый способ. Устройство (фиг.1) содержит генератор 1, коммутатор 2, незаземленную петлю 3, питающую линию 4, блок управления 5, вертикальный магнитоиндукционный датчик 6, фазочувствительный вольтметр 7 и накопитель 8, по каналу синхронизации 9 с блока управления 5 на фазочувствительный вольтметр 7 передаются опорный сигнал и сигнал направления тока J в питающей линии 4. Незаземленная петля 3 и питающая линия 4 соцентричны. Предлагаемый способ реализуют следующим образом. Вначале на вход управления коммутатора 2, в течение интервала времени Δt, поступает управляющий сигнал логического "0" с блока управления 5. Ток в питающей линии протекает в Земле от электрода B к электроду A. В результате величина вертикальной составляющей магнитной индукции в точке наблюдения определяется выражением:

где Bzb, Bze - амплитуда магнитной индукции, соответственно обусловленная магнитным диполем и питающей линией.

В магнитоиндукционном датчике 6 (Фиг.1) наводится ЭДС:

где S - эффективная площадь датчика.

В течение следующего интервала времени Δt, на коммутатор 2 поступает сигнал логической "1" с блока управления 5. Ток в питающей линии теперь протекает от электрода A к электроду B. В результате в точке измерения величина вертикальной компоненты магнитной индукции и наводимой в датчике ЭДС составят соответственно:

Из-за фазового сдвига в измерительных цепях сигналы Uz1 и Uz2 сдвигаются по фазе на неопределенный угол φ0, по постоянной величине.

В результате выражение для Uz1 и Uz2 приобретает вид:

где коэффициент K=S·ω

Напряжения Uz1 и Uz2 поступают на вход фазочувствительного вольтметра 7 (фиг.1), где подвергаются аналого-цифровому преобразованию. В результате на его выходе возникают цифровые коды, пропорциональные реальной и мнимой составляющей напряжений Uz1 и Uz2, определяющиеся следующими выражениями:

где N1 и N3 - измеряют в течении первого интервала времени Δt,

а N2 и N4 - измеряют в течение второго интервала времени Δt.

Выходные коды блока 7 поступают на вход накопителя информации 8 (фиг.1). Из выражений для N1, N2, N3 и N4 определяют фазовый сдвиг φeb, обусловленный проводимостью горных пород, а неопределенный фазовый угол φ0 исключается из результатов:

где ,

Величины Bzb и Bze определяют из выражений:

где m=1/2K - постоянный коэффициент, характеризующий электронные параметры блоков 6 и 7 (фиг.1).

Аналогичные операции проводят на других точках измерений на исследуемой площади. По отношению модулей Bzb, Bze и фазовому сдвигу φeb определяют глубинное геоэлектрическое строение участка работ и наличие в нем аномальных проводящих объектов. Отношение модулей Bze и Bzb определяют следующим выражением [4]:

где y - проекция расстояния от центра петли и питающей линии до точки измерения на ось y, а - длина стороны незаземленной петли.

,

где r - расстояние от центра петли до точки измерения,

ω - частота,

µ0=4π·107 Гн/м.

Функцию Bze/Bzb=f(ξ) используют (фиг.2) для определения величины ξ. Из выражения для ξ находят модуль и фазовый угол кажущегося удельного сопротивления однородного полупространства Земли.

Таким образом, измерения только вертикальной составляющей магнитной индукции позволяют обеспечить стабильность геометрии измерительной установки. Как следствие, удается повысить точность определения электрического сопротивления горных пород путем создания модифицированной установки и методики измерений.

Похожие патенты RU2460097C2

название год авторы номер документа
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 2002
  • Байдиков С.В.
  • Иванов Н.С.
  • Ратушняк А.Н.
  • Уткин В.И.
  • Человечков А.И.
RU2250479C2
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 2005
  • Человечков Александр Иванович
  • Байдиков Сергей Владимирович
  • Ратушняк Александр Николаевич
  • Чистосердов Борис Михайлович
RU2302018C2
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 2008
  • Человечков Александр Иванович
  • Ратушняк Александр Николаевич
  • Байдиков Сергей Владимирович
  • Астафьев Павел Федорович
RU2410730C2
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 2012
  • Шестаков Алексей Федорович
  • Горшков Виталий Юрьевич
  • Девятьяров Валерий Васильевич
RU2544260C2
СПОСОБ ПРОСТРАНСТВЕННОЙ ЧАСТОТНО-ВРЕМЕННОЙ ГЕОЭЛЕКТРОРАЗВЕДКИ (FTEM-3D) 2010
  • Горюнов Андрей Сергеевич
  • Киселев Евгений Семенович
  • Ларионов Евгений Иванович
RU2446417C2
Способ электромагнитных зондирований 1982
  • Белаш Виталий Алексеевич
SU1053041A1
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ 2003
  • Человечков А.И.
  • Уткин В.И.
  • Ратушняк А.Н.
  • Иванов Н.С.
  • Байдиков С.В.
  • Астафьев П.Ф.
RU2248016C1
СПОСОБ ИНДУКЦИОННОГО КАРОТАЖА ИЗ ОБСАЖЕННЫХ СКВАЖИН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Ратушняк Александр Николаевич
  • Теплухин Владимир Клавдиевич
  • Наянзин Анатолий Николаевич
RU2614853C2
СПОСОБ ОБНАРУЖЕНИЯ ПОДЗЕМНЫХ ПОЖАРОВ 2016
  • Шлапаков Павел Александрович
  • Ерастов Антон Юрьевич
  • Хаймин Сергей Александрович
  • Оленченко Владимир Владимирович
RU2631516C1
Способ аэроэлектроразведки с применением легкого беспилотного летательного аппарата 2020
  • Паршин Александр Вадимович
RU2736956C1

Иллюстрации к изобретению RU 2 460 097 C2

Реферат патента 2012 года СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ

Изобретение относится к области геофизических исследований и может быть использовано при изучении геоэлектрического разреза и нахождения аномальных проводящих объектов. Технический результат: повышение точности определения электросопротивления путем создания модифицированной геометрии измерительной установки и методики измерений. Сущность: возбуждают переменное электромагнитное поле на дневной поверхности током, протекающим в соцентричных незаземленной петле и питающей линии, соединенных последовательно. На каждой точке профилей измеряют реальные и мнимые компоненты вертикальных составляющих магнитной индукции для двух полярностей подключения питающей линии. Определяют модули и фазы вертикальных составляющих магнитной индукции, возбуждаемых отдельно током в незаземленной петле и питающей линии. По отношению модулей находят значение кажущегося сопротивления. По изменению его модуля и фазового угла на площади определяют глубинное геоэлектрическое строение участка и наличие в нем аномальных проводящих объектов. 2 ил.

Формула изобретения RU 2 460 097 C2

Способ геоэлектроразведки, в котором возбуждают переменное электромагнитное поле на дневной поверхности током, протекающим в соцентричных незаземленной петле и питающей линии, и измеряют по параллельным профилям вертикальную составляющую магнитной индукции, отличающийся тем, что в нем соединяют последовательно незаземленную петлю и питающую линию, на каждой точке профилей измеряют реальные и мнимые компоненты вертикальных составляющих магнитной индукции для двух полярностей подключения питающей линии, определяют модули и фазы вертикальных составляющих магнитной индукции, возбуждаемых отдельно током в незаземленной петле и питающей линии, и по отношению модулей находят значение кажущегося сопротивления, а по изменению его модуля и фазового угла на площади определяют глубинное геоэлектрическое строение участка и наличие в нем аномальных проводящих объектов.

Документы, цитированные в отчете о поиске Патент 2012 года RU2460097C2

RU 2059269 C1, 27.04.1996
Способ геоэлектроразведки 1985
  • Ефимов Анатолий Дмитриевич
  • Шувал-Сергеев Александр Николаевич
SU1354153A2
Способ геоэлектроразведки 1987
  • Гавеля Эдуард Анатольевич
  • Нахабцев Александр Сергеевич
  • Сапожников Борис Григорьевич
SU1420438A1
Способ геоэлектроразведки 1984
  • Сапожников Борис Григорьевич
  • Нахабцев Александр Сергеевич
  • Яблучанский Анатолий Игнатьевич
SU1233071A1
US 2008105425 A1, 08.05.2008
US 20090243616 A1, 01.01.2009.

RU 2 460 097 C2

Авторы

Человечков Александр Иванович

Байдиков Сергей Владимирович

Давыдов Вадим Анатольевич

Журавлева Розалия Борисовна

Даты

2012-08-27Публикация

2010-05-12Подача