НОРМАЛЬНЫЕ И ИЗОПАРАФИНЫ С НИЗКИМ СОДЕРЖАНИЕМ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ, СЕРЫ И АЗОТА В КАЧЕСТВЕ КОЛЛЕКТОРА ДЛЯ ПЕННОЙ ФЛОТАЦИИ Российский патент 2012 года по МПК B03D1/06 

Описание патента на изобретение RU2461426C2

Область техники, к которой относится изобретение

Изобретение относится к флотационному реагенту, содержащему коллекторную композицию углеводородов для пенной флотации рудных минералов, и, более конкретно, к применению композиции коллекторных парафиновых углеводородов для извлечения угля из руд, содержащих уголь, и угольных шламов.

Уровень техники

Процессы пенной флотации обычно применяются в горнодобывающей промышленности для разделения широкого ряда металлических руд, таких как сульфиды, карбонаты, фосфаты и оксиды металлов групп 3-12 периодической таблицы элементов и/или угля и серы, а также неметаллических руд, таких как уголь или сера. Соответственно, применение флотационных реагентов или флюидов с высокой степенью биологической разлагаемости и при этом обладающей гидролитической стабильностью было бы желательно, особенно с учетом разливов. Дополнительной проблемой является присутствие ароматических соединений, таких как алкилбензолы (например, моно-, ди- и полиалкилбензолы), но еще более специфично, наличие полиядерных ароматических соединений и/или серы приводит при сжигании к выбросам сажи и оксидов серы, как это описано в документе WO-A-2006/086443. Более того, такие флюиды обладают ограниченной биологической разлагаемостью в воде. Поэтому применение флотационных реагентов, которые имеют пониженное содержание сернистых и/или ароматических соединений, чем в реагентах, описанных в WO-A-2006/086443, было желательно, так как их можно было бы сжигать.

Уголь, горючий углеродистый твердый материал, находится в месторождениях, которые по своей природе содержат негорючий минеральный материал. Хотя значительную часть негорючих материалов можно удалить путем просеивания или с использованием приемов традиционного гравитационного концентрирования, таких как центрифугирование, пенная флотация, обычно используется селективный способ сепарационного удаления более мелких негорючих материалов от угля, который также называется "обогащением" угля. Это селективное разделение минералов делает экономически обоснованной комплексную переработку угольных руд и особенно угольных шламов с низким содержанием угля. Термин "селективность" относится к минимизации количества нежелательного негорючего материала или золы в пене. Желательным является извлечение возможно большего количества угля селективным способом, то есть с максимально возможным выходом при как можно меньшем содержании золы. Кроме того, было бы желательно иметь возможность извлекать уголь из угольных месторождений, имеющих очень низкое содержание угля, таких как, например, шламы, которые раньше выбрасывались из-за слишком низкого содержания угля.

Для пенной флотации были описаны различные флотационные реагенты, в том числе нейтральные углеводородные жидкости, произведенные из минеральной нефти, древесной или угольной смолы, в сочетании со спиртами или другими вспенивающими веществами. Типичные коллекторные композиции углеводородов, произведенные из минерального масла, содержат жидкие углеводородные масла среднедистиллятного топлива, имеющего точки выкипания приблизительно от 150 до 400°С. В частности, наиболее широко используются в качестве коллекторной композиции углеводородов газойль и керосин, произведенные из минеральной нефти и природного или нефтяного газового конденсата. Недостатком применения коллекторных композиций углеводородов, произведенных из минеральной нефти, таких как раскрытые в документах US-A-4416769 и GB-A-2225260 газойли, является низкая биологическая разлагаемость и высокая токсичность таких флюидов в море. Это может быть обусловлено наличием ряда компонентов в этих флюидах типа газойля и керосина, в частности большим количеством соединений, содержащих серу и азот, а также присутствием ароматических и нафтеновых углеводородов. Обычно достаточно уже незначительных количеств ароматических и нафтеновых углеводородов для того, чтобы снизить, например, акватическую биологическую разлагаемость до уровня, который уже не будет разрешать применение в контакте с грунтовой или поверхностной водой. Для альтернативных коллекторных композиций углеводородов отмечена ограниченная гидролитическая стабильность и поэтому их нельзя использовать непрерывно, например, эфиры жирных кислот, такие как метиловый эфир рапсового масла, который описан, например, в документе WO-A-2004/098782.

Следовательно, было бы желательно иметь возможность извлекать уголь из месторождений окисленного угля или месторождений с низким содержанием угля с использованием экономически и экологически приемлемого способа.

Эта задача решена заявителем благодаря применению описанного ниже флотационного реагента с высоким содержанием изопарафинов.

Краткое раскрытие изобретения

Соответственно, настоящее изобретение относится к флотационному реагенту, включающему коллекторную композицию углеводородов, содержащую больше чем 80 мас.% изо- и нормальных парафинов, меньше чем 5 миллионных долей (м.д.) серы и меньше чем 1 м.д. азота, и имеющую плотность между 0,65 и 0,8 г/см3 при 15°С и, по меньшей мере, одно вспенивающее вещество.

Подробное раскрытие изобретения

Обычно процесс флотации (также называется процессом "пенной флотации") для обогащения металлических или неметаллических руд, таких как руды, содержащие уголь, проводят путем рассеивания мелких воздушных пузырьков в тонкодисперсной водной суспензии измельченного металлического или неметаллического рудного минерала или шлама. Гидрофобные частицы, такие как частицы угля или частицы металлической руды, которые приобрели гидрофобность за счет обработки флотационным реагентом, содержащим коллекторную композицию, прилипают к воздушным пузырькам и всплывают на поверхность водной суспензии, где они удаляются в виде концентрированной пены.

Таким образом, пенная флотация начинается с измельчения, которое используется для увеличения площади поверхности рудного минерала для последующей обработки и разделения породы на желательные минералы и породные примеси (которые затем необходимо отделить от желательных минералов); при этом рудный минерал размалывается в тонкоизмельченный порошок.

Затем суспензию (также называется пульпой) гидрофобного минерала, содержащего рудный минерал и, в случае флотации угля, гидрофильный уголь, вводят в аэрируемую ванну, в которой создаются пузырьки.

Гидрофобные крупинки минерала или угольного рудного минерала покидают водную фазу, прилипая к воздушным пузырькам, которые поднимаются на поверхность, образуя пену на поверхности сосуда ванны. В случае обогащения угля эта пена содержит мелкие частицы угля, которые затем удаляют из выделенного минерала для дальнейшей очистки.

Не прилипающие частицы (хвосты) или отходы остаются взвешенными в суспензии, или попадают на нижний уровень суспензии.

В этом способе обычно применяются флотационные реагенты. Обычно они включают в себя коллектор и вспенивающее вещество. Коллектор притягивает гидрофобные частицы, в то время как присутствующее вспенивающее вещество, такое как, например, спирт с длинной алкильной цепью, создает слой стабильной пены в камере. Таким образом, основным назначением коллектора является обеспечение гидрофобности желательным частицам, в результате чего на поверхности уменьшаются краевой угол и вязкость и увеличиваются смачиваемость и адгезия между этими частицами и поднимающимися воздушными пузырьками. В то же время коллекторная композиция должна обладать селективностью для того, чтобы хвосты или отходы не становились гидрофобными и таким образом, не всплывали.

Флотация может быть осуществлена в механически перемешиваемых камерах или цистернах, во флотационных колоннах и в некоторых других установках. В механических камерах преимущественно используются большие смесители и воздухораспределительные механизмы внизу цистерны перемешивания для ввода воздуха и обеспечения эффекта перемешивания. Во флотационных колоннах преимущественно используются воздушные или газовые разбрызгиватели с целью введения воздуха снизу высокой колонны, в то время как суспензию вводят выше. За счет движения в противотоке суспензии сверху вниз и воздуха снизу вверх обеспечивается эффект перемешивания. Механические камеры обычно имеют более высокую производительность, но полученный материал обладает худшим качеством, в то время как флотационные колонны обычно имеют малую производительность, но дают материал более высокого качества.

Металл, или металлическая руда, или шлам сначала можно очистить за счет гравитационного разделения для того, чтобы снизить содержание золы и пирита. Эти методы включают встряхивание, обогащение на концентрационных столах и разделение в тяжелой среде. Мелкий рудный минерал диаметром 400 мм обычно обрабатывают с использованием флотации.

В качестве альтернативы, частицы рудного минерала или шлама предпочтительно непосредственно измельчают до диаметра 600 мм или мельче, и всю массу подвергают флотации, не прибегая к первичному гравитационному разделению.

Сначала классифицированное сырье - рудный минерал или шлам флотации - необязательно промывают и затем смешивают с достаточным объемом воды, чтобы приготовить водную суспензию, содержащую твердый концентрат, который способствует быстрой флотации. Обычно используют концентрацию твердого вещества от 2 до 20 процентов по массе, более предпочтительно от 5 до 12 мас.%.

Измельченный рудный минерал преимущественно кондиционируют, то есть приводят в непосредственный контакт с флотационным реагентом, содержащим коллекторную композицию углеводородов до добавления воды, например путем распыления. В случае если водно-угольную суспензию получают в емкости, отличающейся от флотационной камеры, и затем подают ее на флотацию по трубопроводам, желательный непосредственный контакт может быть удобно осуществлен за счет введения флотационного реагента в суспензию выше по потоку от флотационной камеры.

Особенно выгодным вариантом осуществления предложенного способа является процесс обогащения угля и применение флотационного реагента согласно настоящему изобретению при пенной флотации угля. При этом измельченный уголь может подвергаться флотации при естественном значении pH угля в водной суспензии, которое обычно может изменяться от 3,0 до 9,5. Однако значение pH водно-угольной суспензии, до и в ходе флотации, преимущественно поддерживается равным от 4 до 9, предпочтительно от 4 до 8, что обычно способствует наилучшему извлечению угля. Если уголь имеет кислотную природу, то pH можно отрегулировать с использованием щелочного материала, такого как кальцинированная сода, известь, аммиак, гидроксид калия или гидроксид магния, причем гидроксид натрия является предпочтительным. Если водно-угольная суспензия имеет щелочную природу, то для регулирования pH можно использовать карбоновую кислоту, такую как уксусная кислота или тому подобная, или минеральную кислоту, такую как серная кислота, хлористоводородная кислота и т.п.

Кондиционированную и отрегулированную по pH водно-угольную суспензию аэрируют во флотационном устройстве или в группе более грубых камер для флотации угля. Могут быть использованы любые подходящие более грубые установки флотации.

Многие угли, особенно угли, поверхность которых, по меньшей мере, частично была окислена ("выветренный уголь", такой как суббитуминозный уголь, или, например, если угольный пласт подвергался контакту с воздухом), обладают пониженной гидрофобностью и, таким образом, трудно подвергаются флотации. Это приводит к нежелательным потерям существенного количества горючего материала в хвостовой или нефлотируемой части суспензии. Аналогично, уголь невозможно легко извлечь из угольного шлама, то есть мелкого угольного минерала, который раньше выбрасывался из-за низкого содержания угля.

Заявители обнаружили, что выход угля можно выгодно повысить, если флотационный реагент согласно изобретению, содержащий коллекторную композицию углеводородов и спирт, предпочтительно метилизобутилкарбинол (MIBC), применяется при низком значении pH, предпочтительно в диапазоне от 0 до 3.

Способ согласно настоящему изобретению может быть использован индивидуально для обогащения. В качестве альтернативы этот способ может быть использован в сочетании с вторичной флотацией после настоящего способа для того, чтобы добиться еще большего обогащения угля. Дальнейшее увеличение количества так называемого "трудно флотируемого" угля, извлекаемого с пеной, может быть усилено за счет повышения концентрации коллекторной композиции углеводородов.

С целью устранения совместной флотации нежелательного минерального материала и, таким образом, увеличения степени извлечения угля, предпочтительно могут быть введены дополнительные добавки к флотационному реагенту, такие как амиды жирных кислот, продукт конденсации жирной кислоты или эфира жирной кислоты с продуктом взаимодействия полиалкиленполиамина и алкиленоксида, как описано в патенте США №4305815; продукт конденсации алканоламина и жирной кислоты или эфира жирной кислоты, как описано в патенте США №4474619, и продукта взаимодействия продукта конденсации диэтаноламина и жирной кислоты с монокарбоновой кислотой, как описано в патенте США №4330339.

Способ настоящего изобретения может быть использован для флотации антрацита, битуминозного, суббитуминозного угля или тому подобного. Предпочтительно этот способ применяется для флотации промежуточного или низкокачественного угля, в котором поверхность угля окислена до такой степени, что существенно затруднена флотация угля с использованием традиционного коллектора.

Флотационный реагент согласно изобретению может содержать одну или несколько углеводородных композиций, из которых, по меньшей мере, одна представляет собой парафиновый газойлевый компонент, который определен выше. Термин «парафиновая углеводородная композиция» означает композицию, содержащую больше, чем 80 мас.% парафинов, более предпочтительно свыше 90 мас.% парафинов и еще более предпочтительно свыше 95 мас.% парафинов.

Типичная коллекторная композиция углеводородов будет иметь плотность от 0,75 до 0,8 г/см3, предпочтительно от 0,775 до 0,8 г/см3, при 15°С (например, по стандарту ASTM D4502 или IP 365). Типичная коллекторная композиция углеводородов имеет плотность от … и цетановое число (которое определяют по стандарту ASTM D613 или IР 498 [IQT]) от 35 до 95, более предпочтительно от 60 до 85.

Обычно эта композиция будет иметь точку начала кипения в диапазоне от 150 до 230°С и точку конца кипения в диапазоне от 290 до 400°С. Кинематическая вязкость композиции при 40°С (по ASTM D445) целесообразно может составлять от 1,5 дo 4,5 сСт, предпочтительно от 2 до 4,5, более предпочтительно от 2,5 до 4,0, еще более предпочтительно от 2,9 до 3,7, сСт при 40°С. Содержание серы в композиции (определено по стандарту ASTM D2622) составляет меньше чем 5 м.д. по массе или меньше, предпочтительно 2 м.д. по массе или меньше. Содержание азота (определено по стандарту ASTMD 4629) составляет меньше чем 1 м.д. по массе или меньше, предпочтительно 0,5 м.д. по массе или меньше.

Компоненты коллекторной композиции углеводородов предпочтительно имеют температуры выкипания в диапазоне типичного газойля и/или керосина, то есть приблизительно от 150 до 400°С или от 170 до 370°С. Удобно, когда 90 мас.% этих компонентов перегоняются при температуре от 300 до 370°С.

Предпочтительно коллекторная композиция углеводородов содержит газойлевую фракцию, керосиновую фракцию или их смесь. Предпочтительно композиция представляет собой жидкую углеводородную среднедистиллятную фракцию, целесообразно с диапазоном выкипания приблизительно от 150 до 250°С или приблизительно от 150 до 210°С.

Предпочтительно газойлевая фракция имеет плотность от 760 до 790 кг/м3 при 15°С; цетановое число (DIN 51773) больше чем 70, целесообразно от 74 до 85; кинематическую вязкость от 2,0 до 4,5, предпочтительно от 2,5 до 4,0, более предпочтительно от 2,9 до 3,7 сСт (мм2/с) при 40°С; и содержание серы 5 м.д. по массе (миллионных долей по массе) или меньше, предпочтительно 2 м.д. по массе или меньше. Предпочтительно керосиновая фракция имеет точку конца кипения обычно от 190 до 260°С, например от 190 до 210°С для типичной "узкой фракции" керосина или от 240 до 260°С для типичной "широкой" фракции. Предпочтительно точка начала кипения керосина составляет от 140 до 160°С. Предпочтительно керосиновая фракция имеет плотность от 0,730 до 0,760 г/см3 при 15°С, например от 0,730 до 0,745 г/см3 для узкой фракции и от 0,735 до 0,760 г/см3 для широкой фракции; и содержание серы 5 м.д. по массе (миллионных долей по массе) или меньше, предпочтительно 2 м.д. по массе или меньше.

Кроме того, предпочтительно композиция имеет цетановое число от 63 до 75, например от 65 до 69 для узкой фракции, и от 68 до 73 для широкой фракции. Предпочтительно керосин, применяемый в коллекторной композиции углеводородов, представляет собой продукт процесса SMDS (Синтез среднего дистиллята фирмы Shell), предпочтительные признаки которого могут быть такими, как описано ниже. Предпочтительно этот продукт имеет содержание серы 5 м.д. по массе (миллионных долей по массе) или меньше.

Предпочтительно коллекторная композиция углеводородов может содержать одну или несколько газойлевых и/или керосиновых фракций, произведенных в синтезе Фишера-Тропша, необязательно в смеси с газойлем и/или керосином, произведенным не в синтезе Фишера-Тропша.

Кроме того, коллекторная композиция углеводородов может содержать парафиновый газойль, произведенный в каталитическом способе получения углеводородов, который является подходящим компонентом дизельного топлива, из возобновляемых источников, таких как растительные и овощные масла и жиры и животные и рыбные масла и жиры, которые описаны, например, в документе ЕР-А-1681337.

Заявители установили, что коллекторная композиция углеводородов согласно изобретению квалифицируется по стандарту ISO 14593 как биологически легко разлагаемая.

Предпочтительно отношение изомерных парафинов к нормальным, которые присутствуют в коллекторной композиции углеводородов, составляет более 0,3, более предпочтительно больше чем 1, еще более предпочтительно больше чем 3. Коллекторная композиция углеводородов практически может состоять только из изопарафинов.

Предпочтительно коллекторная композиция углеводородов содержит ряд изопарафинов, имеющих n, n+1, n+2, n+3 и n+4 атомов углерода, в которых значение n находится между 8 и 25, более предпочтительно между 8 и 20 и наиболее предпочтительно между 8 и 18. Такая коллекторная композиция углеводородов также известна как парафиновый газойль или керосин, то есть фракция продукта, кипящего в диапазоне газойля и/или керосина, или их смесь, полученная в синтезе Фишера-Тропша.

Термин "произведенная в синтезе Фишера-Тропша" означает, что углеводородная композиция базовое масло представляет собой продукт конденсационного синтеза Фишера-Тропша или произведено из него. Термин "произведенное не в синтезе Фишера-Тропша" можно интерпретировать соответственно.

В процессе синтеза Фишера-Тропша монооксид углерода и водород превращаются в углеводороды с длинной цепочкой, обычно парафиновые углеводороды:

n(СО+2Н2)=(-СН2-)n+nH2O+теплота,

в присутствии соответствующего катализатора и обычно при повышенной температуре (например, от 125 до 300°С, предпочтительно от 175 до 250°С) и/или давлении (например, от 5 до 100 бар, предпочтительно от 12 до 50 бар). По желанию могут быть использованы соотношения водород:монооксид углерода, отличающиеся от 2:1. В свою очередь, монооксид углерода и водород могут быть получены из органических или неорганических, природных или синтетических источников, обычно или из природного газа, или из органически полученного метана.

Предпочтительно коллекторная композиция углеводородов, содержащая непрерывный ряд изопарафинов, как описано выше, может быть получена путем гидроизомеризации парафинового воска, предпочтительно с последующей депарафинизацией некоторого типа, такой как депарафинизация растворителем или каталитическая депарафинизация. Предпочтительно парафиновый воск произведен в синтезе Фишера-Тропша.

Газойлевые и керосиновые продукты могут быть получены непосредственно в синтезе Фишера-Тропша, или косвенно, например, путем фракционирования продуктов синтеза Фишера-Тропша или предпочтительно из продуктов синтеза Фишера-Тропша после гидрогенизационного превращения.

Предпочтительно гидрогенизационное превращение включает гидрокрекинг для регулирования диапазона кипения (смотрите, например, в документах GB-B-2077289 и ЕР-А-0147873) и/или гидроизомеризацию, которая может улучшить свойство текучести на холоде за счет увеличения доли разветвленных парафинов. В документе ЕР-А-0583836 описан двухстадийный процесс гидрогенизационного превращения, в котором сначала продукт синтеза Фишера-Тропша подвергается гидроконверсии в таких условиях, что практически не протекает какая-либо изомеризация или гидрокрекинг (при этом гидрируются олефиновые и кислородсодержащие компоненты) и затем, по меньшей мере, часть полученного продукта подвергается гидроконверсии в таких условиях, что происходит гидрокрекинг и изомеризация с образованием существенно парафинового углеводородного топлива. Желательная газойлевая фракция (фракции) в последующем может быть выделена, например, с использованием дистилляции.

Могут быть использованы другие процессы обработки после синтеза, такие как полимеризация, алкилирование, дистилляция, крекинг-декарбоксилирование, изомеризация и гидрориформинг, с целью модифицирования характеристик продуктов конденсационного синтеза Фишера-Тропша, как описано, например, в патентах США №№4125566 и 4478955.

Примером способа на основе синтеза Фишера-Тропша, который может быть использован, например, для получения вышеописанной коллекторной композиции углеводородов, произведенной в синтезе Фишера-Тропша, является так называемый способ получения дистиллята в суспензионной фазе по технологии Sasol, процесс синтеза среднего дистиллята фирмы Shell и процесс "AGC-21" фирмы Exxon Mobil. Эти и другие процессы более подробно описаны, например, в документах ЕР-А-776959, ЕР-А-668342, US-A-4943672, US-A-5059299, WO-A-9934917 и WO-A-9920720.

Способ SMDS (синтез среднего дистиллята фирмы Shell), подробно описан в работе van der Burgt и др. "Shell Middle Distillate Synthesis Process" (см. выше). В этом способе (его также иногда называют технологией "Газ в жидкие углеводороды" фирмы Shell или "GTL", т.е. "Gas-To-Liquids") получают продукты, относящиеся к диапазону среднего дистиллята, путем превращения синтез-газа, произведенного из природного газа (главным образом метана), в тяжелые углеводороды с длинной цепочкой, парафиновый воск, который затем может подвергаться гидрогенизационному превращению и фракционированию, с образованием жидких транспортных топлив, таких как газойли, которые можно использовать в композициях дизельного топлива. Вариант процесса SMDS, с использованием на стадии каталитического превращения реактора с неподвижным слоем катализатора, в настоящее время эксплуатируется в Bintulu, Малайзия.

Газойлевые и керосиновые фракции, полученные в процессе SMDS, являются промышленно доступными, например, на фирме Shell под торговыми наименованиями Sarasol. Дополнительные примеры газойлей, произведенных в синтезе Фишера-Тропша, описаны в документах ЕР-А-0583836, ЕР-А-1101813, WO-A-97/14768, WO-A-97/14769, WO-A-00/20534, WO-A-00/20535, WO-A-00/11116, WO-A-00/11117, WO-A-01/83406, WO-А-01/83641, WO-A-01/83647, WO-A-01/83648 и US-A-6204426.

В случае коллекторной композиции углеводородов, произведенной в синтезе Фишера-Тропша, эта коллекторная композиция углеводородов содержит непрерывный ряд изопарафинов, имеющих n, n+1, n+2, n+3 и n+4 атомов углерода.

Для определения наличия и содержания непрерывного ряда изопарафинов, имеющих n, n+1, n+2, n+3 и n+4 атомов углерода в коллекторной композиции углеводородов или базовом компоненте (i) можно использовать метод Полевой десорбции/Полевой ионизации (FD/FI). В этой методике образец масла сначала разделяют на полярную (ароматическую) фазу и неполярную (насыщенную) фазу с помощью жидкостной хроматографии высокого разрешения (ЖХВР), метод IP368/01, причем в качестве подвижной фазы используется пентан вместо гексана, предложенного в этом методе. Затем фракции насыщенных и ароматических углеводородов анализируют с использованием масс-спектрометра Finnigan MAT90, оборудованного интерфейсом Полевой десорбции/Полевой ионизации (FD/FI), где используется методика "мягкой" ионизации (FI) для определения типов углеводородов в терминах числа атомов углерода и дефицита водорода. Типовая классификация соединений методом масс-спектрометрии определяется с помощью образовавшихся характеристических ионов и обычно классифицируется по "числу z". При этом общая формула для всех углеводородных частиц задается как: CnH2n+z. Поскольку насыщенную фазу анализируют отдельно от ароматической фазы, возможно определение содержания различных изопарафинов, имеющих одну и ту же стехиометрию или число n. Результаты масс-спектрометрического анализа обрабатывают с использованием коммерческого программного обеспечения (poly 32; поставляется фирмой Sierra Analytics LLC, 3453 Dragoo Park Drive, Modesto, California GA 95350 USA) для того, чтобы определить относительные доли углеводородов каждого типа.

Предпочтительно в коллекторной композиции углеводородов практически отсутствуют сера и азот, или их содержание ниже уровня детектирования. Кроме того, коллекторная композиция углеводородов предпочтительно не содержит или практически не содержит ароматических компонентов.

Предпочтительно коллекторная композиция углеводородов может иметь содержание соединений ароматических углеводородов меньше чем 1 мас.%, предпочтительно, меньше чем 0,5 мас.% и более предпочтительно, меньше 0,1 мас.%, что удобно определяется по стандарту ASTM D4629.

Предпочтительно во флотационном реагенте количество коллекторной композиции углеводородов находится в диапазоне от 50 до 250 грамм на 1 тонну угольного минерала, в расчете на сухой вес. Еще более предпочтительно, коллекторная композиция углеводородов практически не содержит ароматических соединений.

Флотационный реагент согласно настоящему изобретению содержит вспенивающее вещество.

Предпочтительно этот вспенивающее вещество выбирают группы спиртов, жирных кислот, алкиловых эфиров жирных кислот, продуктов конденсации алканоламина и жирных кислот или эфиров жирных кислот, продуктов конденсации жирных кислот с полиалкиленполиамином и алкиленоксидом, продукта конденсации диэтаноламина и жирной кислоты с монокарбоновой кислотой или их смесей.

Подходящие в качестве вспенивающих веществ спирты включают: гексанол, 2-этилгексанол, деканол, изотридеканол и смеси спиртов, такие, которые продает фирма Shell под торговыми марками "LINEVOL", особенно спирт LINEVOL 79, который представляет собой смесь первичных спиртов C7-9, или промышленно доступные смеси спиртов C12-14. Еще более предпочтительным спиртом является 4-метил-2-пентанол (также известен как метилизобутилкарбинол или MIBC), амиловый спирт (1-пентанол и его региоизомеры - 3-метил-1-бутанол, 2-метил-1-бутанол, 2,2-диметил-1-пропанол, 2-пентанол, 3-пентанол, 3-метил-2-бутанол, 2-метил-2-бутанол), гексанол, гептанол, октанол.

Другие предпочтительные вспенивающие вещества включают в себя терпеновые спирты, такие как те, что присутствуют в скипидаре, полигликоли, полиоксипарафины и/или крезиловую кислоту. Более предпочтительно вспенивающее вещество представляет собой спирт, еще более предпочтительно 4-метил-2-пентанол. Количество вспенивающего вещества во флотационном реагенте предпочтительно находится в диапазоне от 250 до 1000 грамм на 1 тонну угольного минерала в расчете на сухой вес.

Отношение коллекторной композиции углеводородов к вспенивающему веществу может быть любым, которое подходит для такого применения. Предпочтительно весовое отношение коллекторной композиции углеводородов к вспенивающему веществу находится в диапазоне от 10:90 до 90:10, более предпочтительно в диапазоне от 20:80 до 80:20 и наиболее предпочтительно в диапазоне от 25:75 до 35:65.

Кроме того, настоящее изобретение относится к способу пенной флотации для обогащения сульфидов, карбонатов, фосфатов и оксидов металлов групп 3-12 Периодической таблицы элементов, которая определена в Справочнике по физической химии, 71-е издание (CRC Handbook of Chemistry и Physics, Chapter 1-11, 71st edition 1991, CRC Press), и/или руд, содержащих уголь и серу, и шламов, который включает флотацию руды или шлама, содержащего желательное соединение металла или соединение неметалла в пенной водной среде, включающей эффективное количество смеси парафиновых углеводородов в качестве коллекторной композиции углеводородов, содержащей больше чем 80 мас.% изомерных и нормальных парафинов, меньше чем 1 мас.% ароматических соединений, меньше чем 5 м.д. серы и меньше чем 1 м.д. азота, и имеющей плотность между 0,65 и 0,8 г/см3 при 15°С.

Предпочтительно коллекторная композиция углеводородов содержит меньше чем 1 мас.% кислородсодержащих соединений.

Кроме того, этот способ включает флотацию руды или шлама в пенной водной среде, включающей эффективное количество смеси парафиновых углеводородов в качестве коллекторной композиции углеводородов. Способ дополнительно включает стадии: (а) контактирование руды или шлама с коллекторной композицией углеводородов и вспенивающим веществом, и (b) образование водной суспензии продукта стадии (а), и (с) водную суспензию мелкого угля, содержащую коллекторную композицию углеводородов и вспенивающее вещество, подвергают обработке в процессе пенной флотации, и (d) отделение хвостов процесса пенной флотации от флотированного материала. В случае обогащения угля флотированный материал практически состоит из обогащенного мелкого угля.

Предпочтительно стадия (а) включает: (i) измельчение руды с целью освобождения минеральных частиц; и (ii) добавление измельченной руды к водной среде, содержащей улавливающий флюид.

Предпочтительно стадия (с) включает: (iii) контактирование продукта стадии (а) с воздухом или азотом, таким образом, чтобы на поверхности флотационной камеры образовалась пена, нагруженная минералом; и (iv) выделение пены, нагруженной гидрофильными компонентами, образовавшимися на стадии (с), с поверхности флотационной камеры, и необязательно, (v) улавливание компонентов, удержанных в суспензии. Предпочтительно руда или шлам представляет собой руду, содержащую уголь, или угольный шлам, причем уголь выделяется на поверхности.

Кроме того, настоящее изобретение относится к применению газойля или керосина, содержащего больше чем 80 мас.% изомерных и нормальных парафинов, меньше чем 1 мас.% ароматических соединений, меньше чем 5 м.д. серы и меньше чем 1 м.д. азота, и имеющего плотность между 0,65 и 0,8 г/см3 при 15°С, в коллекторной композиции углеводородов по пунктам 1-8 формулы изобретения, для усовершенствования извлечения при пенной флотации сульфидов, карбонатов, фосфатов и оксидов металлов групп 3-12 периодической таблицы элементов и/или угля и серы. Предпочтительно газойль или керосин представляют собой углеводородную композицию, произведенную в синтезе Фишера-Тропша.

В предпочтительном варианте способ настоящего изобретения относится к процессу пенной флотации для обогащения мелкого угля, который включает флотацию руды, содержащей уголь, в пенной водной среде, содержащей эффективное количество смеси парафиновых углеводородов в качестве коллекторной композиции углеводородов и вспенивающее вещество, которое определено выше. Предпочтительно этот способ включает: (а) формирование водной суспензии мелкого угля, содержащей коллектор и вспенивающее вещество, и (b) водную суспензию мелкого угля, содержащую коллекторную композицию углеводородов и вспенивающее вещество, подвергают обработке в процессе пенной флотации, и (с) отделение хвостов процесса пенной флотации от флотированного материала, который практически состоит из обогащенного мелкого угля. Предпочтительно стадия (а) включает: (i) измельчение рудного угольного минерала с целью извлечение минеральных частиц; и (ii) добавление измельченной руды, содержащей уголь, к водной среде, содержащей улавливающий флюид. Предпочтительно стадия (b) включает: (iii) контактирование продукта стадии (а) с воздухом или азотом, таким образом, чтобы на поверхности флотационной камеры образовалась пена, нагруженная минералом; и (iv) выделение пены, нагруженной углем, образовавшейся на стадии (с), с поверхности флотационной камеры.

Похожие патенты RU2461426C2

название год авторы номер документа
ПРЕДОТВРАЩЕНИЕ ПЕНООБРАЗОВАНИЯ В СПОСОБЕ ОБРАТНОЙ ФЛОТАЦИИ ДЛЯ ОЧИСТКИ КАРБОНАТА КАЛЬЦИЯ 2013
  • Дильски Штефан
  • Да Сильва Вагнер Клаудиу
  • Спекк Кассола Моника
  • Барталини Нилсон Мар
  • Дуарте Зайре Гуимарес
  • Арьяс Медина Жоржи Антонью
  • Де Оливейра Филью Антонью Педру
RU2625409C2
СПОСОБ ОБОГАЩЕНИЯ УГЛЯ 2020
  • Александрова Татьяна Николаевна
  • Кусков Вадим Борисович
  • Афанасова Анастасия Валерьевна
RU2739182C1
ГИДРОКСАМАТНАЯ КОМПОЗИЦИЯ И СПОСОБ ПЕННОЙ ФЛОТАЦИИ 2002
  • Хьюз Теренс Чарльз
RU2304025C2
КОМПОЗИЦИЯ ЖИРНЫХ КИСЛОТ И N-АЦИЛЬНЫХ ПРОИЗВОДНЫХ САРКОЗИНА ДЛЯ УЛУЧШЕННОЙ ФЛОТАЦИИ НЕСУЛЬФИДНЫХ МИНЕРАЛОВ 2016
  • Педаин Клаус-Ульрих
  • Питарч Лопес Хесус
  • Липовски Гюнтер
  • Бецуйденхоут Жак Коллен
RU2675641C1
СПОСОБ ОБОГАЩЕНИЯ СУЛЬФИДНЫХ МИНЕРАЛОВ 2003
  • Ротенберг Алан С.
  • Маглиокко Лино Г.
RU2318607C2
СПОСОБ СЕЛЕКТИВНОЙ ФЛОТАЦИИ ЧАСТИЦ УГЛЯ 1995
  • Колин Дж.Маккенни[Ca]
  • Бриан В.Реймонд[Ca]
RU2100094C1
Способ извлечения ценных минералов 1990
  • Ричард Р.Климпел
  • Роберт Д.Хансен
  • Дональд Е.Леонард
  • Бейсил С.Фи.
SU1837988A3
Коллекторная композиция для выделения пенной флотацией металлсодержащих сульфидных или сульфидированных металлсодержащих оксидных минералов из руды 1987
  • Ричард Р.Климпел
  • Роберт Д.Хансен
SU1831373A3
КОМПОЗИЦИИ КОНСИСТЕНТНОЙ СМАЗКИ 2008
  • Жермен Жильбер Робер Бернар
  • Уэдлок Дейвид Джон
  • Уитли Алан Ричард
RU2495093C2
Реагент - собиратель для обогащения угольных шламов 1990
  • Никитин Иван Никитович
  • Гаркушин Юрий Константинович
  • Набоков Александр Константинович
  • Федотов Борис Петрович
SU1777962A1

Реферат патента 2012 года НОРМАЛЬНЫЕ И ИЗОПАРАФИНЫ С НИЗКИМ СОДЕРЖАНИЕМ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ, СЕРЫ И АЗОТА В КАЧЕСТВЕ КОЛЛЕКТОРА ДЛЯ ПЕННОЙ ФЛОТАЦИИ

Изобретение относится к флотационному реагенту, содержащему коллекторную композицию углеводородов для пенной флотации рудных минералов. Флотационный реагент включает коллекторную композицию углеводородов, содержащую больше чем 80 мас.% изомерных и нормальных парафинов, меньше чем 1 мас.% ароматических соединений, меньше чем 5 миллионных долей серы и меньше чем 1 миллионная доля азота, и имеющую плотность между 0,65 и 0,8 г/см3 при 15°С, и по меньшей мере, одно вспенивающее вещество. Изобретение раскрывает применение флотационного реагента, в котором количество парафиновой углеводородной композиции находится в количестве от 50 до 250 г/т. Изобретение также раскрывает применение газойля или керосина, содержащего указанную парафиновую углеводородную композицию. Способ пенной флотации включает флотацию руды или шлама с использованием эффективного количества указанной коллекторной композиции углеводородов. Технический результат - повышение эффективности флотации, экологическая безопасность. 5 н. и 10 з.п. ф-лы.

Формула изобретения RU 2 461 426 C2

1. Флотационный реагент, включающий коллекторную композицию углеводородов, содержащую больше, чем 80 мас.% изомерных и нормальных парафинов, меньше, чем 1 мас.% ароматических соединений, меньше, чем 5 миллионных долей серы, и меньше, чем 1 миллионная доля азота, и имеющую плотность между 0,65 и 0,8 г/см3 при 15°С, и, по меньшей мере, одно вспенивающее вещество.

2. Флотационный реагент по п.1, в котором коллекторная композиция углеводородов содержит меньше, чем 1 мас.% кислородсодержащих соединений.

3. Флотационный реагент по п.1 или 2, в котором коллекторная композиция углеводородов содержит ряд изопарафинов, имеющих n, n+1, n+2, n+3 и n+4 атомов углерода, в которых значение n находится между 8 и 25.

4. Флотационный реагент по п.1, в котором пенный реагент выбирают из группы спиртов, жирных кислот, алкиловых эфиров жирных кислот, продуктов конденсации алканоламина и жирный кислоты или эфира жирной кислоты, продуктов конденсации жирной кислоты с полиалкиленполиамином и алкиленоксидом, продукта конденсации диэтаноламина и жирной кислоты с монокарбоновой кислотой или их смесей.

5. Флотационный реагент по п.4, в котором вспенивающее вещество представляет собой метилизобутилкарбинол, и в котором весовое отношение коллекторной композиции углеводородов к вспенивающему веществу находится в диапазоне от 25:75 до 75:25.

6. Применение флотационного реагента по п.1, в котором количество парафиновой углеводородной композиции в коллекторной композиции углеводородов находится в диапазоне от 50 до 250 г на 1 т руды, содержащей уголь, в расчете на сухой вес.

7. Применение флотационного реагента по п.4 или 5, в котором количество спирта в коллекторной композиции углеводородов находится в диапазоне от 250 до 1000 г на 1 т руды, содержащей уголь, в расчете на сухой вес.

8. Флотационный реагент по п.1 или 2, в котором коллекторная композиция углеводородов практически не содержит ароматических соединений.

9. Флотационный реагент по п.1 или 2, в котором флотационный реагент содержит смесь углеводородов, имеющую цетановое число больше, чем 60, кинематическую вязкость при 40°С больше, чем 3,0 сСт, и плотность при 15°С больше, чем 830 кг/м3.

10. Способ пенной флотации для обогащения сульфидов, карбонатов, фосфатов и оксидов металлов групп 3-12 Периодической таблицы элементов и/или содержащих уголь и серу руд и шламов, который включает флотацию руды или шлама, содержащего желательное соединение металла или соединение неметалла в пенной водной среде, содержащей эффективное количество смеси парафиновых углеводородов в качестве коллекторной композиции углеводородов, содержащей больше, чем 80 мас.% изомерных и нормальных парафинов, меньше, чем 1 мас.% ароматических соединений, меньше, чем 5 миллионных долей серы, и меньше, чем 1 миллионная доля азота, и имеющей плотность между 0,65 и 0,8 г/см3 при 15°С.

11. Способ по п.10, который включает:
(а) контактирование руды или шлама с коллекторной композицией углеводородов и вспенивающим веществом, и
(b) формирование водной суспензии продукта стадии (а), и
(с) обработку водной суспензии руды, содержащей коллекторную композицию углеводородов и вспенивающее вещество, в процессе пенной флотации, и
(d) отделение хвостов процесса пенной флотации от флотированного материала.

12. Способ по п.10 или 11, в котором стадия (а) включает:
(i) измельчение руды с целью высвобождения минеральных частиц; и (ii) добавление измельченной руды к водной среде, содержащей улавливающий флюид.

13. Способ по п.10 или 11, в котором стадия (с) включает:
(iii) контактирование продукта стадии (а) с воздухом или азотом таким образом, чтобы на поверхности флотационной камеры образовалась пена, нагруженная минералом; и
(iv) выделение пены, нагруженной гидрофильными компонентами, образовавшимися на стадии (с), с поверхности флотационной камеры, и необязательно
(v) улавливание компонентов, удержанных в суспензии.

14. Способ по п.10 или 11, в котором руда или шлам представляет собой руду или шлам, содержащие уголь.

15. Применение газойля или керосина, содержащего больше, чем 80 мас.% изомерных и нормальных парафинов, меньше, чем 1 мас.% ароматических соединений, меньше, чем 5 миллионных долей серы, и меньше, чем 1 миллионная доля азота, и имеющего плотность между 0,65 и 0,8 г/см3 при 15°С, в коллекторной композиции углеводородов по пп.1-8 формулы изобретения, для улучшенного извлечения при пенной флотации сульфидов, карбонатов, фосфатов и оксидов металлов групп 3-12 Периодической таблицы элементов и/или угля и серы.

Документы, цитированные в отчете о поиске Патент 2012 года RU2461426C2

US 4416769 A, 22.11.1983
Реагент-собиратель 1957
  • Брикенштейн Х.А.
  • Веселов В.В.
  • Иванова М.Т.
  • Калашникова Н.И.
  • Кожуховская А.Н.
  • Оречкин Д.Б.
  • Погодаев В.Н.
  • Соколова В.И.
  • Финенко П.К.
  • Чипанин И.В.
  • Шепотько О.Ф.
SU109396A1
РЕАГЕНТ-СОБИРАТЕЛЬ ДЛЯ ФЛОТАЦИИ УГЛЯ 1998
  • Иванов Г.В.
  • Басарыгин В.И.
  • Мин Р.С.
  • Байченко А.А.
  • Васькин В.В.
  • Бауэр Л.Н.
  • Николаева Т.Л.
  • Савинова И.А.
RU2160168C2
WO 2006086443 A2, 17.08.2006
US 4308133 A, 29.12.1981.

RU 2 461 426 C2

Авторы

Ландшоф Йорг

Вилбранд Карстен

Даты

2012-09-20Публикация

2007-12-06Подача