УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАЗМЕРОВ ЧАСТИЦЫ Российский патент 2012 года по МПК G01N15/02 

Описание патента на изобретение RU2461810C1

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известно устройство для измерения размеров частиц аэрозоля, суспензий и порошкообразных материалов (см. «Установка высшей точности для воспроизведения счетной концентрации и размеров частиц аэрозоля, суспензий и порошкообразных материалов». Измерительная техника №9, 1997, стр.68-70), в котором метод малоуглового рассеяния лазерного излучения используется для измерения размеров частиц.

Недостатком этого известного устройства является сложность зондирования частиц лазерным лучом и анализа малоугловой индикатрисы рассеянного частицами излучения.

Наиболее близким техническим решением к предлагаемому является принятое автором за прототип устройство для измерения размеров капли воды (см. патент РФ №2393462), содержащее импульсный модулятор, источник излучения, детектор, усилитель, индикатор, передающую и приемную рупорные антенны, закрепленные диаметрально на наружной поверхности трубопровода. По принципу действия этого измерителя при взаимодействии импульсно модулированного электромагнитного сигнала с контролируемым объектом по величине выходного тока детектора можно определить размер капли воды.

Недостатком этого устройства можно считать погрешность из-за несоответствия формы контролируемой капли воды с огибающей импульса зондируемого электромагнитного сигнала.

Техническим результатом заявляемого решения является повышение точности измерения.

Технический результат достигается тем, что в устройство для измерения размеров частицы, содержащее источник излучения, детектор, соединенный выходом со входом усилителя, введены циркулятор, измеритель мощности и приемо-передающая рупорная антенна, закрепленная на наружной поверхности трубопровода, причем выход источника излучения соединен с первым плечом циркулятора, второе плечо которого подключено к приемо-передающей рупорной антенне, третье плечо циркулятора соединено со входом детектора, выход усилителя подключен к измерителю мощности.

Сущность заявляемого изобретения, характеризуемого указанными выше признаками, состоит в том, что при зондировании контролируемой среды непрерывными электромагнитными колебаниями фиксированной частоты измерение мощности отраженной от частицы электромагнитной волны дает возможность получить информацию о размерах частицы, перемещаемой по трубопроводу.

Наличие в заявляемом устройстве совокупности перечисленных существующих признаков позволяет решить поставленную задачу измерения размеров частицы на основе определения мощности отраженной от частицы электромагнитной волны при ее локации непрерывными электромагнитными колебаниями фиксированной частоты с желаемым техническим результатом, т.е. повышением точности измерения.

На чертеже приведена структурная схема устройства.

Устройство, реализующее данное техническое решение, содержит источник излучения 1, соединенный выходом с первым плечом циркулятора 2, приемо-передающую рупорную антенну 3, детектор 4, соединенный выходом со входом усилителя 5 и измеритель мощности 6. На чертеже цифрой 7 обозначен трубопровод.

Устройство работает следующим образом.

С выхода источника излучения 1 электромагнитные колебания фиксированной частоты поступают на первое плечо циркулятора 2. Далее эти колебания, снимаемые со второго плеча циркулятора, с помощью приемо-передающей рупорной антенны 3 направляются в трубопровод 7, по которому перемешается контролируемая частица. Здесь следует отметить, что ввод электромагнитного сигнала в металлический трубопровод может быть осуществлен через диэлектрическое окно. После этого отраженный от частицы электромагнитный сигнал, улавливаемый рупорной антенной, согласно принципу действия циркулятора (см. И.В.Лебедев. Техника и приборы СВЧ. Том 1. Издательство «Высшая школа». М. 1970, стр.293), снимается с его третьего плеча. Затем, согласно предлагаемому техническому решению, отраженный сигнал поступает на вход детектора 4. Выходной продетектированный сигнал последнего после усиления в усилителе 5 поступает в измеритель мощности 6, где производится измерение мощности отраженного от частицы электромагнитного сигнала.

В рассматриваемом случае для плотности потока мощности отраженной от частицы волны можно записать

где Ротр - мощность отраженной от частицы волны; G - коэффициент направленности приемо-передающей рупорной антенны; Х - расстояние от частицы до точки измерения мощности; Потр - плотность потока мощности отраженного сигнала.

Выражение (1) с учетом известной из радиолокации эффективной площади рассеяния (отражения) облучаемой частицы

σч=4πХ2Потрзон,

где Пзон - плотность потока мощности зондирующей волны, можно переписать как

где σч - эффективная площадь рассеяния (отражения) частицы.

Пусть по трубопроводу перемешается диэлектрическая сферическая по форме частица и выполняется условие dч<<λ, где dч - диаметр сферической частицы, λ - длина зондирующей волны. Тогда эффективную площадь рассеяния одной такой частицы диаметром много меньше длины волны можно определить формулой Ми

Коэффициент K=|m2-1/m2+2|2, выражаемый через показатель преломления m, в зависимости от свойства и состава материала, из которого образована частица, может иметь различные значения.

Совместное решение выражений (2) и (3) позволяет записать

Из последней формулы получаем

Формула (4) показывает, что при известных значениях Пзон, λ, G и К измерением мощности отраженной от частицы электромагнитной волны можно вычислить диаметр (размер) сферической частицы, перемещаемой по трубопроводу.

Как уже отмечалось выше, в данном устройстве для измерения мощности Ротр используется измеритель мощности 6. Следовательно, по показаниям этого измерителя можно получить информацию о размерах частицы в трубопроводе.

Таким образом, в предлагаемом техническом решении благодаря облучению частицы непрерывными электромагнитными колебаниями фиксированной частоты и определению мощности отраженной от частицы электромагнитной волны можно повысить точность измерения размеров перемещаемой по трубопроводу частицы. Кроме того, одним из преимуществ предлагаемого устройства по сравнению с другими отдаленными прототипами можно считать исключение влияния расстояния от частицы до точки измерения мощности.

Данное техническое решение, реализуемое, например, на базе генератора ГЛПД-1, успешно может быть применено для автоматического контроля гранулометрического состава сыпучих диэлектрических материалов в потоке.

Похожие патенты RU2461810C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ГЕОМЕТРИЧЕСКОГО РАЗМЕРА ДИЭЛЕКТРИЧЕСКОЙ ЧАСТИЦЫ 2012
  • Ахобадзе Гурам Николаевич
RU2508534C1
НЕРАЗРУШАЮЩИЙ СВЧ-СПОСОБ КОНТРОЛЯ ВЛАЖНОСТИ ТВЕРДЫХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Тётушкин Владимир Александрович
  • Федюнин Павел Александрович
  • Дмитриев Дмитрий Александрович
  • Чернышов Владимир Николаевич
RU2269763C2
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ГРАНУЛОМЕТРИЧЕСКОГО СОСТАВА КУСКОВЫХ МАТЕРИАЛОВ 2009
  • Ахобадзе Гурам Николаевич
RU2404426C1
СВЧ-СПОСОБ ИЗМЕРЕНИЯ ПОВЕРХНОСТНОЙ ВЛАЖНОСТИ ТВЕРДЫХ МАТЕРИАЛОВ, ВЛАЖНОСТИ ПО ОБЪЕМУ ВЗАИМОДЕЙСТВИЯ, НОРМАЛЬНОГО К ПОВЕРХНОСТИ ГРАДИЕНТА ВЛАЖНОСТИ, И УСТРОЙСТВО ЕГО РЕАЛИЗАЦИИ 2004
  • Тётушкин Владимир Александрович
  • Федюнин Павел Александрович
  • Дмитриев Дмитрий Александрович
  • Чернышов Владимир Николаевич
RU2294533C2
Устройство для измерения оборотов диска индукционного счетчика 2017
  • Ахобадзе Гурам Николаевич
RU2654919C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКОГО ПОКРЫТИЯ 2007
  • Ахобадзе Гурам Николаевич
RU2332658C1
УСТРОЙСТВО ДЛЯ ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ ОТРАЖАТЕЛЬНЫХ СВОЙСТВ ОБЪЕКТОВ СЛОЖНОЙ ФОРМЫ В СВЧ ДИАПАЗОНЕ РАДИОВОЛН 1997
  • Бублик Виктор Александрович
  • Жмуров Всеволод Андреевич
  • Капкин Александр Павлович
  • Крайнов Валерий Романович
  • Селезнев Вячеслав Степанович
  • Троицкий Вячеслав Даниилович
RU2111506C1
ЭЛЕКТРОМАГНИТНЫЙ МИКРОВОЛНОВЫЙ ИЗЛУЧАЮЩИЙ ДВА ЛИНЕЙНО ПОЛЯРИЗОВАННЫХ ПУЧКА В СТОРОНУ ЦЕЛИ ИНТЕРФЕРОМЕТР 2011
  • Ляско Арий Борисович
RU2482446C1
РАДИОИЗМЕРИТЕЛЬНАЯ УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ ЭФФЕКТИВНОЙ ПОВЕРХНОСТИ РАССЕЯНИЯ ОБЪЕКТОВ 2015
  • Валеев Георгий Галиуллович
RU2584260C1
СВЧ-СПОСОБ КОНТРОЛЯ ВЛАЖНОСТИ ТВЕРДЫХ МАТЕРИАЛОВ 2006
  • Федюнин Павел Александрович
  • Дмитриев Дмитрий Александрович
  • Дмитриев Сергей Александрович
  • Федоров Николай Павлович
RU2330268C2

Реферат патента 2012 года УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАЗМЕРОВ ЧАСТИЦЫ

Предлагаемое техническое решение относится к измерительной технике. Устройство для измерения размеров частицы, перемещаемой по трубопроводу, содержит источник излучения, детектор, соединенный выходом со входом усилителя. Также устройство содержит циркулятор, измеритель мощности и приемо-передающую рупорную антенну, закрепленную на наружной поверхности трубопровода. Причем выход источника излучения соединен с первым плечом циркулятора, второе плечо которого подключено к приемо-передающей рупорной антенне, третье плечо циркулятора соединено со входом детектора, выход усилителя подключен к измерителю мощности. Техническим результатом изобретения является повышение точности измерения. 1 ил.

Формула изобретения RU 2 461 810 C1

Устройство для измерения размеров частицы, перемещаемой по трубопроводу, содержащее источник излучения, детектор, соединенный выходом со входом усилителя, отличающееся тем, что в него введены циркулятор, измеритель мощности и приемопередающая рупорная антенна, закрепленная на наружной поверхности трубопровода, причем выход источника излучения соединен с первым плечом циркулятора, второе плечо которого подключено к приемопередающей рупорной антенне, третье плечо циркулятора соединено со входом детектора, выход усилителя подключен к измерителю мощности.

Документы, цитированные в отчете о поиске Патент 2012 года RU2461810C1

0
SU284407A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАЗМЕРОВ КАПЛИ ВОДЫ 2009
  • Ахобадзе Гурам Николаевич
RU2393462C1
Способ определения размеров частиц сыпучего материала в потоке 1989
  • Лавринченко Олег Николаевич
  • Карташов Станислав Григорьевич
SU1693465A1
JP 62030938 А, 09.02.1987.

RU 2 461 810 C1

Авторы

Ахобадзе Гурам Николаевич

Даты

2012-09-20Публикация

2011-05-30Подача