КОМБИНИРОВАННАЯ ЭНЕРГЕТИЧЕСКАЯ СИСТЕМА Российский патент 2012 года по МПК F02C3/28 

Описание патента на изобретение RU2463463C2

Изобретение относится к области энергетики и может быть использовано для выработки электроэнергии гарантированных параметров в широком температурном диапазоне атмосферного воздуха при пониженном выбросе вредных веществ в составе выхлопных газов.

Известна установка, содержащая газотурбинный двигатель и сопряженный с ней валом электрогенератор (патент РФ №2013615, F02С 6/00, 16.01.1992). В установке мощность газотурбинного двигателя обеспечивает выработку электроэнергии электрогенератором. Недостатком технического решения является пониженная выработка электроэнергии в летний период при высокой температуре окружающей среды, а также выброс в атмосферу выхлопных газов с высоким содержанием вредных веществ.

Наиболее близким аналогом того же назначения, что и заявляемое техническое решение является газотурбинная энергетическая установка (патент РФ №2354838, F02С 7/143, 19.11.2007), содержащая газотурбинный двигатель, механически связанный валом с двигателем электрогенератор и устройство для подвода охлажденного воздуха в газотурбинный двигатель.

Техническое решение по прототипу позволяет повысить эффективность работы газотурбинной установки при эксплуатации ее в жаркий период года. Однако его недостатком является выброс в атмосферу выхлопных газов с высоким содержанием вредных веществ.

В основу изобретения положено решение следующих задач:

- обеспечение гарантированного уровня вырабатываемой мощности электроэнергии при повышенной температуре атмосферного воздуха;

- улучшение экологических показателей при работе энергосистемы за счет уменьшения содержания вредных примесей в выхлопном газе.

Поставленные задачи решаются тем, что комбинированная энергетическая система содержит газотурбинный двигатель, механически соединенный валом с двигателем электрогенератор и источник холодного воздуха, связанный газодинамически с входом в двигатель.

Новым в изобретении является то, что система дополнительно снабжена устройством подготовки и подачи газообразного водорода в двигатель, выхлопным коллектором, двухтопливными горелками в камере сгорания двигателя, выходным запорным клапаном и редуктором давления. Устройство содержит резервуар жидкого водорода, насос подачи жидкого водорода с приводом, всасывающий и напорный трубопроводы с запорными клапанами, подогреватель, выполненный в виде замкнутой полости, накопитель-газификатор жидкого водорода, выполненный в виде емкости и размещенный в полости подогревателя. Выхлопной коллектор содержит газовод с запорным клапаном.

Насос на входе через всасывающий трубопровод с запорным клапаном соединен с резервуаром жидкого водорода, а на выходе - через напорный трубопровод с запорным клапаном с входом накопителя-газификатора. Выход накопителя-газификатора через выходной запорный клапан и редуктор давления соединен с двухтопливными горелками камеры сгорания. Газовод связан газодинамически входом с выходом двигателя, а выходом - через запорный клапан с атмосферой.

При таком устройстве комбинированной энергетической системы:

- обеспечение энергетической системы устройством подготовки и подачи газообразного водорода в двигатель позволяет улучшить качество топливовоздушной смеси для сжигания в камере сгорания газотурбинного двигателя и обеспечить снижение содержания вредных веществ в выхлопном газе;

- наличие резервуара жидкого водорода позволяет обеспечивать длительную, бесперебойную работу энергетической системы;

- насос с помощью привода создает необходимое давление жидкого водорода для подачи его в накопитель-газификатор в процессе перекачки его в накопитель-газификатор;

- всасывающий и напорный трубопроводы с запорными клапанами обеспечивают подачу жидкого водорода в насос и отвод его в накопитель-газификатор;

- подогреватель обеспечивает ускорение газификации жидкого водорода в накопителе-газификаторе;

- накопитель-газификатор позволяет газифицировать жидкий водород, увеличить давление газожидкостной смеси до ее полной газификации при повышенной температуре и обеспечить давление газа, намного превышающее давление подачи насоса, что уменьшает габариты и массу накопителя-газификатора;

- выхлопной коллектор, включающий газовод с запорным клапаном, позволяет отводить выхлопные газы в атмосферу;

- двухтопливные горелки обеспечивают высокое качество подготовки горючей смеси воздуха и топлив, гарантирующее минимальный уровень оксидов азота.

Развитие совокупности существенных признаков изобретения для частных случаев дано далее.

Подогреватель выполнен в виде утилизатора выхлопных газов газотурбинного двигателя, а выхлопной коллектор дополнительно может содержать газовод утилизатора с запорным клапаном, причем газовод утилизатора газодинамически входом связан с выходом двигателя, а выходом - через запорный клапан и внутреннюю полость утилизатора тепла с атмосферой, при этом внутренняя полость утилизатора тепла связана по теплу с накопителем-газификатором.

Утилизатор тепла, совместно с газоводом утилизатора и запорным клапаном, позволяет использовать тепло выхлопных газов для сокращения времени газификации жидкого водорода в накопителе-газификаторе.

Источник холодного воздуха может содержать источник сжатого воздуха, турбодетандер и механически связанный с ним по валу дополнительный электрогенератор, причем источник сжатого воздуха через турбодетандер газодинамически должен быть связан с входом двигателя.

Турбодетандер снижает температуру воздуха ниже температуры окружающей среды и подает охлажденный воздух на вход компрессора. Такое устройство обеспечивает бесперебойную подачу холодного воздуха с заданными параметрами на вход двигателя и, соответственно, заданный уровень мощности двигателя при повышении температуры окружающей среды. К тому же электрогенератор турбодетандера вырабатывает дополнительную электроэнергию.

Насос подачи жидкого водорода может быть выполнен центробежным. Это позволяет минимизировать массу насоса при его удовлетворительном кпд.

Привод насоса выполнен в виде электродвигателя. Это позволяет использовать имеющуюся в системе электроэнергию для питания привода.

Привод насоса может быть выполнен в виде турбины. Это позволяет минимизировать массу привода при его высоком кпд.

Насос и турбина могут быть снабжены магнитными подшипниками с электронной системой управления. Это дает возможность исключить систему смазки подшипников, повысить эффективность турбонасоса и увеличить ресурс его работы.

Турбина привода насоса может быть газодинамически входом соединена через запорный клапан с источником сжатого воздуха, а выходом - с атмосферой. Это позволяет использовать имеющийся в системе сжатый воздух в качестве рабочего тела турбины.

Турбина привода насоса может быть снабжена отдельной системой подготовки и подачи рабочего тела, включающей дополнительный газификатор жидкого водорода, клапан газовый, регулятор давления газа, газопроводы высокого и низкого давления, водородную емкость. Причем газификатор газодинамически входом связан с выходом насоса, а выходом - через газопровод высокого давления и регулятор давления газа с входом в турбину. Выход турбины через газопровод низкого давления и клапан газовый связан с водородной емкостью Это позволяет использовать имеющийся в системе внутренний энергетический потенциал для привода насоса.

Выхлопной коллектор дополнительно может содержать газовод газификатора с запорным клапаном. Газификатор газодинамически и по теплу входом связан с выходом двигателя через газовод газификатора и запорный клапан, а выходом - с атмосферой. Это позволяет использовать тепло выхлопного газа для интенсификации процесса газификации жидкого водорода в газификаторе и соответственно уменьшения массы газификатора.

Водородной емкостью может быть накопитель-газификатор, при этом выход турбины связан через газопровод низкого давления и клапан газовый с выходом накопителя-газификатора. Это позволяет упростить систему и уменьшить ее металлоемкость и стоимость.

Водородная емкость может быть выполнена, по меньшей мере, из двух емкостей, сообщающихся между собой. Это позволяет выполнять водородную емкость из емкостей имеющегося типоразмера и уменьшить ее стоимость.

Накопитель-газификатор может быть выполнен, по меньшей мере, из двух емкостей, сообщающихся между собой. Это позволяет выполнять накопитель - газификатор из емкостей имеющегося типоразмера и уменьшить его стоимость.

Резервуар жидкого водорода может быть выполнен в виде транспортной емкости. Это позволяет удешевить энергосистему за счет использования серийно выпускаемых емкостей, например емкостей автоцистерн.

Двухтопливные горелки камеры сгорания могут содержать раздельные контуры подачи штатного топлива газотурбинного двигателя, газообразного водорода и воздуха. Это улучшает смесеобразование топливовоздушной смеси, обеспечивает сокращение длины зоны горения и, как следствие, уменьшает образование оксидов азота - вредных примесей выхлопного газа газотурбинного двигателя.

Комбинированная система может дополнительно содержать эжектор с газовым и воздушным входами. Причем эжектор расположен на стыке выхода газовода утилизатора и внутренней полости утилизатора тепла. Здесь вход коллектора в полость утилизатора выполнен в виде газового входа эжектора, а воздушный вход эжектора соединен с атмосферой. Это позволяет подводить тепло к накопителю-газификатору с ограничением его температуры, что может быть вызвано, например ограничением величины давления газообразного водорода в накопителе-газификаторе по условиям его прочности.

Накопитель-газификатор дополнительно может содержать стыковочное устройство для питания потребителей газообразного водорода. Это позволяет снабжать газообразным водородом высокого давления помимо газотурбинного двигателя и других потребителей, например, газовые баллоны, что расширяет потребительские свойства энергосистемы.. В частности, газообразным водородом высокого давления (до 70 МПа) могут наполняться облегченные металлокомпозитные баллоны БК-7-700 АЦ объемом до 12 литров производства ЗАО НПП «Маштест» для обеспечения работы топливных элементов на автомобилях.

Водородная емкость может дополнительно содержать стыковочное устройство для питания потребителей газообразного водорода повышенного давления, например горелок камер сгорания газотурбинных двигателей, топливных элементов или водородно-кислородных парогенераторов. Так стехиометрическое сжигание водорода в кислороде с последующим балластированием водой получаемого продукта сгорания позволяет с помощью Н2/O2-парогенераторов реализовать разнообразные термодинамические циклы преобразования энергии. В частности, при давлении пара 20 МПа и температуре 1500 К можно достигнуть в схемах на базе указанных парогенераторов величин кпд вблизи 0.62, что по эффективности конкурентоспособно даже с перспективными ПГУ при сопоставимых финансовых затратах.

Таким образом решены поставленные в изобретении задачи:

- обеспечен гарантированный уровень вырабатываемой мощности электроэнергии при повышенной температуре атмосферного воздуха;

- улучшены экологические показатели при работе энергосистемы за счет уменьшения содержания вредных примесей в выхлопном газе.

Настоящее изобретение поясняется последующим подробным описанием комбинированной энергетической системы и ее работы со ссылкой на схематичные изображения системы, представленные на фиг.1-6, где:

на фиг.1 изображен общий вид комбинированной энергетической системы;

на фиг.2 изображен общий вид комбинированной энергетической системы с подводом тепла выхлопного газа к накопителю-газификатору.

на фиг.3 изображен общий вид комбинированной энергетической системы с схемами варианта источника холодного воздуха и системы питания воздухом привода насоса подачи жидкого водорода;

на фиг.4 изображен общий вид комбинированной энергетической системы с вариантом системы питания газообразным водородом привода насоса;

на фиг.5 изображен общий вид комбинированной энергетической системы с другим вариантом системы питания водородом привода насоса;

на фиг.6 изображен общий вид комбинированной энергетической системы с эжектором в газоводе утилизатора.

Комбинированная энергетическая система содержит (см. фиг.1) газотурбинный двигатель 1, механически соединенный валом с двигателем 1, электрогенератор 2 и источник 3 холодного воздуха, связанный газодинамически с входом в двигатель 1. Система дополнительно снабжена устройством 4 подготовки и подачи газообразного водорода в двигатель 1. Устройство 4 содержит резервуар 5 жидкого водорода, насос 6 подачи жидкого водорода с приводом 7, всасывающим 8 и напорным 9 трубопроводами, соответственно с запорными клапанами 10 и 11, подогреватель 12, выполненный в виде замкнутой полости 13, накопитель-газификатор 14 жидкого водорода, выполненный в виде емкости и размещенный в полости 13 подогревателя 12, а также выхлопной коллектор 15, включающий газовод 16 с запорным клапаном 17, двухтопливные горелки 18 камеры сгорания двигателя 1, выходной запорный клапан 19 и редуктор давления 20. Насос 6 на входе через всасывающий трубопровод 8 с запорным клапаном 10 соединен с резервуаром 5 жидкого водорода, а на выходе - через напорный трубопровод 9 с запорным клапаном 11 с входом накопителя-газификатора 14. Выход накопителя-газификатора 14 через выходной клапан 19 и редуктор давления 20 соединен с двухтопливными горелками 18 камеры сгорания. Газовод 16 связан газодинамически входом с выходом двигателя 1, а выходом через запорный клапан 17 - с атмосферой. При этом внутренняя полость 13 подогревателя 12 сопряжена газодинамически и по теплу с накопителем-газификатором 14.

Подогревателем является утилизатор тепла 12 (см. фиг.2) выхлопных газов двигателя, а выхлопной коллектор 15 содержит дополнительно газовод 21 утилизатора с запорным клапаном 22. Газовод 21 газодинамически входом связан с выходом двигателя 1, а выходом - через запорный клапан 22 и внутреннюю полость 13 утилизатора тепла 12 с атмосферой. Внутренняя полость 13 утилизатора тепла 12 связана по теплу с накопителем-газификатором 14.

Источник 3 холодного воздуха содержит (см. фиг.3) источник 23 сжатого воздуха, турбодетандер 24 и механически связанный с ним по валу дополнительный электрогенератор 25. Причем источник 23 сжатого воздуха через турбодетандер 24 газодинамически связан с входом двигателя 1. Насос 6 подачи жидкого водорода выполнен центробежным, а привод насоса 6 выполнен в виде турбины 26.

Насос 6 и турбина 26 снабжены магнитными подшипниками с электронной системой управления (не показано).

Турбина 26 газодинамически входом соединена через запорный клапан 27 с источником 23 сжатого воздуха, а выходом - с атмосферой.

Турбина 26 в другом варианте (см. фиг.4) может быть снабжена отдельной системой подготовки и подачи рабочего тела, включающей дополнительный газификатор 28 жидкого водорода, клапан газовый 29, регулятор 30 давления газа, газопровод высокого давления 31, газопровод низкого давления 32, водородную емкость 33. Причем газификатор 28 газодинамически входом связан с выходом насоса 6, а выходом - с входом регулятора 30 давления газа. Выход регулятора 30 давления газа связан через газопровод 31 высокого давления с входом в турбину 26, где выход турбины 26 через газопровод 32 низкого давления и газовый клапан 29 связан с водородной емкостью 33.

Выхлопной коллектор 15 дополнительно (фиг.4) может содержать газовод газификатора 34 с запорным клапаном 35. При этом газовод газификатора 34 выхлопного коллектора 15 газодинамически связан входом с выходом двигателя 1, а выходом через газификатор 28 - с атмосферой.

Водородная емкость 33 может быть выполнена, по меньшей мере, из двух емкостей, сообщающихся между собой.

Работу водородной емкости может выполнять (см. фиг.5) накопитель-газификатор 14, при этом выход турбины 26 связан через газопровод низкого давления 32 и клапан газовый 29 с выходом накопителя-газификатора 14.

Накопитель-газификатор 14 может быть выполнен, по меньшей мере, из двух емкостей, сообщающихся между собой. Резервуар 5 жидкого водорода может быть выполнен в виде транспортной емкости.

Двухтопливные горелки 18 содержат раздельные контуры подачи штатного топлива газотурбинного двигателя 1, газообразного водорода и воздуха (не показано).

Комбинированная система может дополнительно содержать (см. фиг.6) эжектор 36 с газовым 37 и воздушным 38 входами. Причем эжектор 36 расположен на стыке выхода газовода утилизатора 21 с внутренней полостью 13 утилизатора тепла 12. Выход газовода 21 в полость 13 утилизатора тепла 12 выполнен в виде газового входа эжектора 37, а воздушный вход эжектора 38 соединен с атмосферой.

Накопитель-газификатор 14 дополнительно может содержать стыковочное устройство для питания потребителей газообразного водорода, например топливных элементов или газовых баллонов (не показано).

Водородная емкость 33 может содержать стыковочное устройство для питания потребителей газообразным водородом, например горелки камеры сгорания газотурбинного двигателя (не показано).

Работа системы (см. фиг.1) осуществляется следующим образом.

Перед пуском системы резервуар жидкого водорода 5 заполнен жидкостью с давлением выше атмосферного; открыты запорные клапаны 10, 11 и 17 выхлопного коллектора. Производится запуск газотурбинного двигателя 1, с подачей в двухтопливную горелку 18 штатного топлива. Из двигателя 1 выхлопной газ через газовод 16 и запорный клапан 17 отводится в атмосферу. Включается в работу источник холодного воздуха 3 и холодный воздух поступает на вход газотурбинного двигателя 1, уменьшая температуру поступающего в двигатель 1 воздуха. Включается привод 7 и из резервуара 5 через трубопровод 8 с клапаном 10 насос 6 начинает подавать жидкий водород через трубопровод 9 с клапаном 11 в накопитель-газификатор 14, где он газифицируется. После заполнения накопителя-газификатора 14 закрывается запорный клапан 11 и при достижении в накопителе-газификаторе 14 давления газообразного водорода необходимой для работы двигателя величины открывается выходной клапан 19. Газообразный водород через редуктор давления 20, поддерживающий заданную величину давления, поступает в двухтопливные горелки 18 и энергосистема начинает работать в двухтопливном режиме.

При работе системы, представленной на фиг.2, после завершения перекачки жидкого водорода из резервуара 5 в накопитель-утилизатор 14 открывается запорный клапан 22 и выхлопной газ через газовод 21 выхлопного коллектора 15 подается во внутреннюю полость 13 утилизатора тепла 12 и нагревая его газифицирует жидкий водород в накопителе-газификаторе 14.

При работе системы, представленной на фиг.3, после запуска газотурбинного двигателя 1 в источнике холодного воздуха 3 из источника сжатого воздуха 23 с температурой окружающей среды подается сжатый воздух в турбодетандер 24, температура и давление воздуха понижаются и охлажденный воздух подается на вход газотурбинного двигателя 1. Вырабатываемая в турбодетандере 24 мощность используется для привода дополнительного электрогенератора 25.

Кроме того (см. фиг.3), после запуска газотурбинного двигателя 1 может открываться клапан 27 и из источника сжатого воздуха 23 через клапан 27 сжатый воздух поступит в турбину 26, являющуюся приводом насоса 6.

При запуске системы, представленной на фиг.4, после запуска газотурбинного двигателя 1 открывается клапан газовый 29. Жидкость за насосом 6 разделяется на две части: одна часть через запорный клапан 11 попадает в накопитель-газификатор 14, а другая - в газификатор 28. В газификаторе 28 жидкость газифицируется и через газопровод высокого давления 31 и регулятор давления газа 30 поступает в турбину 26. В турбине 26 срабатывается перепад давления, образуется крутящий момент и турбина 26 вместе с механически связанным с ней насосом 6 начинает вращаться, что приводит к повышению давления за насосом 6. Из турбины 26 газообразный водород через газопровод низкого давления 32 с клапаном газовым 29 поступает в водородную емкость 33.

Кроме того (фиг.4), после запуска двигателя 1 в газоводе газификатора 34 выхлопного коллектора 15 может открыться запорный клапан 35 и выхлопной газ дополнительно поступает в атмосферу из газотурбинного двигателя 1 через газовод 34 и газификатор 28. При прохождении в газификаторе 28 выхлопной газ газифицирует проходящий через него жидкий водород.

При работе системы, представленной на фиг.5, газообразный водород из турбины 26 через газопровод низкого давления 32 и запорный клапан 29 поступает на выход накопителя-газификатора 14.

Накопитель-газификатор 14 может быть (фиг.5) выполнен, по меньшей мере, из двух емкостей, сообщающихся между собой.

При работе энергосистемы, представленной на фиг.6, выхлопной газ с высокой температурой через запорный клапан 22 выходит из газовода утилизатора 21 выхлопного коллектора 15 и поступает через газовый вход 37 в эжектор 36. В эжектор 36 через воздушный вход 38 поступает также атмосферный воздух, который смешивается в эжекторе 36 с выхлопным газом. Разбавленный воздухом выхлопной газ пониженной температуры поступает во внутреннюю полость 13 утилизатора тепла 12, где интенсифицирует процесс газификации жидкого водорода.

Часть газообразного водорода из накопителя-утилизатора 14 может через стыковочное устройство (не показано) направляться потребителям газообразного водорода.

Часть газообразного водорода из водородной емкости 33 может через стыковочное устройство (не показано) направляться потребителям газообразного водорода.

В качестве примера выберем газотурбинную энергетическую установку ПАЭС-2500. В России имеется огромный парк (более 1000 шт.) выпущенных промышленностью передвижных автоматизированных электростанций ПАЭС-2500 мощностью 2.5 МВт, в которых используется однороторный газотурбинный авиационный двигатель АИ-20. Представляется перспективным провести модернизацию этих ГТУ с целью улучшения их характеристик и экологических показателей. Целесообразность использования ГТУ типа ПАЭС-2500 в заявляемой газотурбинной энергетической установке подтверждается результатами сравнительных расчетов.

Основные параметры, принятые в расчетном исследовании ГТУ при нормальной температуре ТН=288 К: мощность 2500 кВт, расход воздуха 20 кг/с, степень повышения полного давления воздуха 7.0, температура перед турбиной 1030 К, кпд компрессора 0.85, кпд турбины 0.88.

В качестве резервуара жидкого водорода используется стандартная транспортная емкость объемом 25 м (ЦТВ 25/06) с жидким водородом при температуре около 23 К и соответствующем ей давлении 0.20 МПа.

Накопитель-газификатор выполнен в виде трех одинаковых параллельно задействованных газовых емкостей с суммарным объемом 30 м3, позволяющим вместить все топливо из резервуара жидкого водорода в газообразном состоянии при рабочем давлении до 100 МПа. Такое высокое давление газообразного водорода позволяет как использовать емкости накопителя-газификатора меньших размеров, так и заправлять водород в баллоны для автомобилей.

Насос, подающий жидкий водород, - центробежный одноступенчатый - обеспечивает на выходе давление 3 МПа и расход 5 кг/с. Эти параметры позволяют обеспечивать подачу жидкого водорода в накопитель-газификатор существенно быстрее, чем может происходить газификация жидкости из-за теплоемкости стенок и внешнего теплоподвода из окружающей среды. При этом окружная скорость центробежного колеса одноступенчатого насоса не превысит 250-270 м/с, частота вращения колеса 25000 об/мин и потребная мощность для привода насоса не более 300 кВт при величине его кпд 75%.

Турбина - осевая двухступенчатая, работающая на газообразном водороде, имеет степень понижения полного давления равную 2, что позволяет ей отдавать требуемую мощность при величине кпд 75% и расходе водорода (с температурой перед турбиной 250 К) в количестве не более 13% от расхода жидкого водорода через насос; окружная скорость на среднем диаметре колес турбины равна 210 м/с. Внешние диаметральные габариты насоса и турбины близки и составляют примерно 200 мм.

Водородная емкость с давлением 1.5 МПа содержит 200 кг газообразного водорода и объем ее составляет 120 м3.

Заправка пустых емкостей накопителя-газификатора жидким водородом при указанных параметрах системы занимает не более 5 минут, при этом давление газа в конце заправки за указанное время всегда меньше величины давления, которую может обеспечить насос. Повышение давления газообразного водорода до расчетной величины 80-100 МПа осуществляется путем нагрева водорода в емкостях до температуры Т≤350 К теплом выхлопного газа с использованием эжектора. Это давление устанавливается менее чем через двое суток при нагреве накопителя-газификатора с температурой 310 К и через сутки с небольшим - при нагреве с температурой 350 К.

Расчеты показывают, что при повышении температуры окружающей среды до +45°С мощность ПАЭС-2500 составляет 1755 кВт, а кпд 20%; заявляемая же энергосистема при той же температуре окружающей среды обеспечивает суммарную мощность 2210 кВт с кпд двигателя 21.6%, т.е. на 26% больше по мощности, чем исходная ГТУ, и на 8% большим кпд газотурбинного двигателя.

Таким образом, предлагаемое изобретение позволяет существенно повысить эффективность и экологичность энергосистемы.

Энергетическая система может представлять особый интерес для автономного снабжения электричеством с высокими показателями эффективности и экологии мест, в которых имеется промышленное потребление жидкого водорода, например в центрах испытания жидкостных ракетных двигателей, а также в городах с развитым парком электромобилей, использующих топливные элементы при выработке электроэнергии для нужд транспортного средства. Кроме того, газообразный водород высокого давления представляет интерес при внедрении водородно-кислородных парогенераторов, разработанных в Объединенном институте высоких температур РАН.

Похожие патенты RU2463463C2

название год авторы номер документа
УНИВЕРСАЛЬНАЯ ВОЗДУШНО-ТУРБИННАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2008
  • Гуров Валерий Игнатьевич
  • Иванов Вадим Леонидович
  • Шестаков Константин Никодимович
RU2395703C2
ГАЗОТУРБИННАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2007
  • Гуров Валерий Игнатьевич
  • Шестаков Константин Никодимович
  • Чайнов Николай Дмитриевич
  • Курносов Владимир Владимирович
RU2354838C2
УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ ПОМЕЩЕНИЯ 2008
  • Гуров Валерий Игнатьевич
  • Шестаков Константин Никодимович
  • Марков Дмитрий Валентинович
  • Ватченко Елена Федосиевна
  • Гуров Игорь Валерьевич
RU2386908C2
УНИВЕРСАЛЬНАЯ КОМПЛЕКСНАЯ ЭНЕРГОСИСТЕМА 2011
  • Гуров Валерий Игнатьевич
  • Фаворский Олег Николаевич
  • Вионцек Виктор Кузьмич
  • Аксенов Станислав Петрович
  • Нигматуллин Равиль Зямилевич
RU2489589C2
КОМБИНИРОВАННАЯ ГАЗОТУРБОДЕТАНДЕРНАЯ УСТАНОВКА ДЛЯ РАБОТЫ НА ПРИРОДНОМ ГАЗЕ 2011
  • Гуров Валерий Игнатьевич
RU2463462C1
Комплекс для подвода криогенной жидкости в емкости, газификации криогенной жидкости и хранения газа высокого давления 2017
  • Гуров Валерий Игнатьевич
  • Харьковский Сергей Валентинович
  • Цветков Игорь Вячеславович
RU2659414C1
ГАЗОТУРБИННАЯ УСТАНОВКА 2013
  • Гуров Валерий Игнатьевич
  • Шестаков Константин Никодимович
  • Касаткина Галина Владимировна
  • Суровцев Игорь Георгиевич
RU2520214C1
СПОСОБ КОНВЕРТИРОВАНИЯ ТУРБОВАЛЬНОГО АВИАЦИОННОГО ДВИГАТЕЛЯ В НАЗЕМНУЮ ГАЗОТУРБИННУЮ УСТАНОВКУ 2014
  • Гуров Валерий Игнатьевич
  • Шестаков Константин Никодимович
  • Харьковский Сергей Валентинович
RU2579526C2
ВОЗДУШНАЯ ТУРБОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2008
  • Гуров Валерий Игнатьевич
  • Шестаков Константин Никодимович
  • Ватченко Елена Федосиевна
  • Гуров Игорь Валерьевич
  • Куфтов Александр Федорович
RU2382959C2
ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2013
  • Гуров Валерий Игнатьевич
  • Новиков Александр Сергеевич
  • Шестаков Константин Никодимович
RU2525042C1

Иллюстрации к изобретению RU 2 463 463 C2

Реферат патента 2012 года КОМБИНИРОВАННАЯ ЭНЕРГЕТИЧЕСКАЯ СИСТЕМА

Комбинированная энергетическая система содержит газотурбинный двигатель, механически соединенный валом с двигателем электрогенератор и источник холодного воздуха, связанный газодинамически с входом в двигатель. Система дополнительно содержит устройство подготовки и подачи газообразного водорода в двигатель, которое включает резервуар жидкого водорода, насос подачи жидкого водорода с приводом, всасывающий и напорный трубопроводы с запорными клапанами, подогреватель, накопитель-газификатор жидкого водорода, а также выхлопной коллектор, включающий газовод с запорным клапаном, двухтопливные горелки в камере сгорания двигателя, выходной запорный клапан и редуктор давления. Насос на входе через всасывающий трубопровод с запорным клапаном соединен с резервуаром жидкого водорода, а на выходе - через напорный трубопровод с запорным клапаном с входом накопителя-газификатора. Выход накопителя-газификатора через выходной запорный клапан и редуктор давления соединен с двухтопливными горелками камеры сгорания. Газовод связан газодинамически входом с выходом двигателя, а выходом - через запорный клапан с атмосферой. Подогреватель выполнен в виде замкнутой полости. Накопитель-газификатор жидкого водорода выполнен в виде емкости и размещен в полости подогревателя. Изобретение направлено на стабильное получение электроэнергии гарантированного уровня в широком температурном диапазоне атмосферного воздуха с пониженным выбросом вредных примесей с выхлопным газом. 17 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 463 463 C2

1. Комбинированная энергетическая система, содержащая газотурбинный двигатель, механически соединенный валом с двигателем электрогенератор и источник холодного воздуха, связанный газодинамически с входом в двигатель, отличающаяся тем, что система дополнительно содержит устройство подготовки и подачи газообразного водорода в двигатель, которое включает резервуар жидкого водорода, насос подачи жидкого водорода с приводом, всасывающий и напорный трубопроводы с запорными клапанами, подогреватель, выполненный в виде замкнутой полости, накопитель-газификатор жидкого водорода, выполненный в виде емкости и размещенный в полости подогревателя, а также выхлопной коллектор, включающий газовод с запорным клапаном, двухтопливные горелки в камере сгорания двигателя, выходной запорный клапан и редуктор давления, где насос на входе через всасывающий трубопровод с запорным клапаном соединен с резервуаром жидкого водорода, а на выходе через напорный трубопровод с запорным клапаном - с входом накопителя-газификатора, выход накопителя-газификатора через выходной запорный клапан и редуктор давления соединен с двухтопливными горелками камеры сгорания, газовод связан газодинамически входом с выходом двигателя, а выходом, через запорный клапан - с атмосферой.

2. Комбинированная система по п.1, отличающаяся тем, что подогреватель выполнен в виде утилизатора выхлопных газов газотурбинного двигателя, а выхлопной коллектор дополнительно может содержать газовод утилизатора с запорным клапаном, причем газовод утилизатора газодинамически входом связан с выходом двигателя, а выходом через запорный клапан и внутреннюю полость утилизатора тепла - с атмосферой, при этом внутренняя полость утилизатора тепла связана по теплу с накопителем-газификатором.

3. Комбинированная система по п.1, отличающаяся тем, что источник холодного воздуха содержит источник сжатого воздуха, турбодетандер и механически связанный с ним по валу дополнительный электрогенератор, причем источник сжатого воздуха через турбодетандер газодинамически связан с входом двигателя.

4. Комбинированная система по п.1, отличающаяся тем, что насос подачи жидкого водорода выполнен центробежным.

5. Комбинированная система по п.1, отличающаяся тем, что привод насоса выполнен в виде электродвигателя.

6. Комбинированная система по п.1, отличающаяся тем, что привод насоса выполнен в виде турбины.

7. Комбинированная система по п.6, отличающаяся тем, что насос и турбина снабжены магнитными подшипниками с электронной системой управления.

8. Комбинированная система по п.6, отличающаяся тем, что турбина газодинамически входом соединена через запорный клапан с источником сжатого воздуха, а выходом - с атмосферой.

9. Комбинированная система по п.6, отличающаяся тем, что турбина снабжена отдельной системой подготовки и подачи рабочего тела, включающей газификатор, клапан газовый, регулятор давления газа, газопровод высокого давления, газопровод низкого давления, водородную емкость, где газификатор гидравлически входом связан с выходом насоса, а выходом газодинамически через газопровод высокого давления и регулятор давления газа связан с входом в турбину, выход турбины через газопровод низкого давления и клапан газовый связан с водородной емкостью.

10. Комбинированная система по п.9, отличающаяся тем, что выхлопной коллектор дополнительно содержит газовод газификатора с запорным клапаном, где газификатор газодинамически и по теплу входом связан с выходом двигателя через газовод газификатора и запорный клапан, а выходом - с атмосферой.

11. Комбинированная система по п.9, отличающаяся тем, что водородная емкость выполнена, по меньшей мере, из двух емкостей, сообщающихся между собой.

12. Комбинированная система по п.9, отличающаяся тем, что водородной емкостью является накопитель-газификатор, при этом выход турбины связан через газопровод низкого давления с выходом накопителя-газификатора.

13. Комбинированная система по п.1, отличающаяся тем, что накопитель-газификатор выполнен, по меньшей мере, из двух емкостей, сообщающихся между собой.

14. Комбинированная система по п.1, отличающаяся тем, что резервуар жидкого водорода выполнен в виде транспортной емкости.

15. Комбинированная система по п.1, отличающаяся тем, что двухтопливные горелки камеры сгорания содержат раздельные контуры подачи штатного топлива газотурбинного двигателя, газообразного водорода и воздуха.

16. Комбинированная система по п.2, отличающаяся тем, что она дополнительно содержит эжектор с газовым и воздушным входами, причем эжектор расположен на стыке выхода газовода утилизатора с внутренней полостью утилизатора тепла, где выход газовода утилизатора в полость утилизатора выполнен в виде газового входа эжектора, а воздушный вход эжектора соединен с атмосферой.

17. Комбинированная система по п.1, отличающаяся тем, что накопитель-газификатор дополнительно содержит стыковочное устройство для питания потребителей газообразного водорода, например газовых баллонов автомобилей.

18. Комбинированная система по п.9, отличающаяся тем, что водородная емкость дополнительно содержит стыковочное устройство для питания потребителей газообразного водорода, например горелок камер сгорания газотурбинных двигателей, топливных элементов или водородно-кислородных парогенераторов.

Документы, цитированные в отчете о поиске Патент 2012 года RU2463463C2

ГАЗОТУРБИННАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2007
  • Гуров Валерий Игнатьевич
  • Шестаков Константин Никодимович
  • Чайнов Николай Дмитриевич
  • Курносов Владимир Владимирович
RU2354838C2
Устройство для снятия наработанных катушек на прядильных и крутильных машинах с подвесной рогулькой 1952
  • Костенко Ф.Н.
SU96193A1
ДВУХКОНТУРНЫЙ ГАЗОТУРБИННЫЙ ВЕНТИЛЯТОРНЫЙ ДВИГАТЕЛЬ 2003
  • Агафонов Юрий Михайлович
  • Брусов Владимир Алексеевич
  • Брусова Татьяна Сергеевна
  • Агафонов Николай Юрьевич
  • Аблаева Екатерина Яковлевна
  • Балымов Александр Фёдорович
  • Бобров Рауф Каюмович
  • Беломестнов Эдуард Николаевич
  • Бурлаков Лев Иванович
  • Богданов Александр Иванович
  • Великанова Нина Петровна
  • Голущенко Анатолий Романович
  • Закиев Фарит Кавиевич
  • Зазерский Владимир Дмитриевич
  • Кадыров Раиф Ясавеевич
  • Корнаухов Александр Анатольевич
  • Коломыцева Елена Евгеньевна
  • Кузнецов Николай Ильич
  • Кожин Виктор Георгиевич
  • Ларюхин Сергей Анатольевич
  • Лысова Валентина Петровна
  • Маргулис Станислав Гершевич
  • Мальцева Татьяна Ивановна
  • Мифтахов Ильгиз Инсарович
  • Мокшанов Александр Павлович
  • Семёнова Тамара Анатольевна
  • Симкин Эдуард Львович
  • Шамсутдинов Марат Ильдарович
  • Шустов Виктор Алексеевич
  • Хамитов Рафаэль Махмутович
  • Ильюшкин Василий Васильевич
  • Коробова Надежда Васильевна
  • Тонких Светлана Юрьевна
RU2271460C2
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2005
  • Весенгириев Михаил Иванович
RU2280183C1
DE 3100751 A1, 07.01.1982
US 5317877 A, 07.06.1994.

RU 2 463 463 C2

Авторы

Гуров Валерий Игнатьевич

Дмитренко Анатолий Иванович

Никитин Юрий Николаевич

Рачук Владимир Сергеевич

Фаворский Олег Николаевич

Харьковский Сергей Валентинович

Шестаков Константин Никодимович

Даты

2012-10-10Публикация

2010-12-24Подача