Изобретение относится к круглогодичному кондиционированию воздуха при работе в автоматическом режиме поддержания температурно-влажностного режима (ТВР) в помещении, обеспечивающем оптимальное потребление различных видов энергии.
Известен способ автоматического управления параметрами воздуха в помещении (а.с. СССР №576496, МКИ F24F 11/06), заключающийся в том, что автоматическое управление параметрами воздуха в помещении осуществляется путем измерения и регулирования энтальпии, влагосодержания и расходов внутреннего, приточного и наружного воздуха. Регулирование осуществляется по отклонению текущих значений энтальпии и влагосодержания внутреннего воздуха от их экстремальных значений, которые находятся на границе зоны допустимых параметров.
Недостатки данного способа:
- исходными данными для регулирования являются экстремальные значения, находящиеся на границе зоны допустимых параметров;
- низкая точность получения оптимальных параметров;
- регулирование параметров воздуха осуществляется по двум каналам и не используются каналы регулирования расхода наружного и рециркуляционного воздуха;
- не учитываются изменения тепловлажностных нагрузок (ТВН) в помещении.
Известен способ управления параметрами воздуха (патент РФ №2350850, МПК F24F 11/06, приоритет от 30.11.2007) - ближайший аналог, заключающийся в том, что автоматическое управление параметрами воздуха в помещении осуществляется путем измерения и регулирования энтальпии, влагосодержания и расходов внутреннего, приточного и наружного воздуха на основании их обработки в блоке оптимизации и формирования команд, в котором вычисляются тепло- и влаговыделения в помещении, зоны, параметры воздуха в контрольной точке, определяется технология обработки воздуха в кондиционере и включается режим работы кондиционера, обеспечивающий оптимальный способ обработки воздуха, а регулирование параметров внутреннего воздуха осуществляется по их отклонению от параметров в контрольной точке.
Недостаток данного способа:
- не используется в работе СКВ рециркуляционный воздух;
- не учтены классы тепловлажностных нагрузок (ТВН).
Целью предлагаемого изобретения является создание способа автоматического управления системой кондиционирования воздуха по оптимальным режимам, основанной на двухуровневой системе функционирования блока автоматизации и управления учитывающей класс ТВН и предусматривающий использование воздуха I и II рециркуляции.
Поставленная цель достигается путем организации двухуровневой системы функционирования блока автоматизации и управления таким образом, что на первом уровне выполняются необходимые измерения параметров забираемого наружного, приточного и удаляемого воздуха, вычисляются тепло- и влагоизбытки в помещении, параметры воздуха в опорных точках, класс тепловлажностных нагрузок, вычисляются границы зон изменения параметров наружного воздуха и определяется конкретная расчетная зона, в пределах которой находятся текущие параметры наружного воздуха, устанавливается соответствующая этой расчетной зоне контрольная точка и далее в зависимости от комбинации класса тепловлажностных нагрузок и расчетной зоны устанавливается соответствующий технологический режим работы кондиционера, предусматривающий использование воздуха I и II рециркуляции посредством подключения соответствующих регулирующих органов аппаратов тепловлажностной обработки воздуха, а на втором уровне, для установленного технологического режима работы, обеспечивается регулирование для поддержания заданных параметров воздуха в помещении, посредством воздействия на регулирующие органы аппаратов для обработки воздуха.
Таким образом, предлагаемый способ автоматического управления системой кондиционирования воздуха позволяет оптимизировать расходы различных видов энергии и технологических сред (электроэнергии, воздуха и тепло- и хладоносителей) за счет организации двухуровневой системы функционирования блока автоматизации и управления, позволяющей использование воздуха I и II рециркуляции в зависимости от класса ТВН.
Анализ аналогов показал, что предлагаемое техническое решение является новым. Новизна предлагаемого способа автоматического управления системой кондиционирования воздуха заключается в двухуровневой организации функционирования блока автоматизации и управления, в результате которой последовательно выполняется комплекс мероприятий, зависящих от комбинации расчетной зоны и класса тепловлажностных нагрузок, учитывающего необходимость использования рециркуляционного воздуха. Комбинация расчетной зоны и класса тепловлажностных нагрузок является основанием для формирования технологического процесса обработки воздуха.
Таким образом, заявляемое изобретение характеризуется новизной существенного признака, дающего положительный эффект, и характеризуется признаками соответствия критерию «изобретательский уровень».
На фиг.1 представлена блок-схема алгоритма технологического процесса обработки воздуха в кондиционере. Комплекс мероприятий, выполняемых в блоках с 1 по 7, составляют первый уровень управления.
В блоке 1 выполняется:
- установка требуемой температуры внутреннего воздуха в обслуживаемом помещении tтреб;
- установка требуемой относительной влажности внутреннего воздуха в обслуживаемом помещении φтреб;
- установка минимального расхода Gmin наружного воздуха;
- установка максимального расхода Gмах наружного воздуха.
В блоке 2 система управления посредством опроса измерительных датчиков производит замер параметров наружного, приточного и удаляемого воздуха. Выполняется сбор данных о:
- температуре наружного воздуха tнар;
- относительной влажности наружного воздуха φнар;
- температуре внутреннего воздуха в обслуживаемом помещении tпом;
- относительной влажности воздуха в обслуживаемом помещении φпом;
- расходе наружного воздуха Gнар;
- температуре приточного воздуха tпр;
- относительной влажности приточного воздуха φнар;
- расходе приточного воздуха Gпр;
- температуре удаляемого воздуха tуд;
- относительной влажности удаляемого воздуха φуд;
- расходе удаляемого воздуха Gуд;
- расходе воздуха первой рециркуляции Gрец1;
- расходе воздуха второй рециркуляции Gрец2;
- барометрическом давлении Pб;
- температуре воды в воздухоохладителе Тв.
В блоке 3 выполняется расчет текущих значений тепло- и влагоизбытков в помещении:
Δq=Gпр×(Iкт-Iпр); Δw=Gпр×(dкт-dпр)
В блоке 4 вычисляются параметры в опорных точках. Вычислив значения Δq и Δw, и зная минимальный и максимальный расход наружного воздуха, параметры в опорных точках H1min, H2min, Н3min, H4min, H1max, H2max, H3mах, Н4mах рассчитываются по следующим формулам:
где опорные точки H1min, H2min, H3min, H4min характеризуют параметры воздуха при минимальном расходе воздуха; опорные точки H1max, H2max, Н3mах, Н4mах характеризуют параметры воздуха при максимальном расходе воздуха; Gmin и Gmax - соответственно минимально неизбежный и максимально целесообразный расход наружного воздуха. На термодинамических схемах возможно различное расположение опорных точек H1min, H2min, H3min, H4min, H1max, H2max, Н3mах, Н4mах относительно линии φ=100%, влияющих на определение класса ТВН.
Определение класса ТВН выполняется в блоке 5.
Для I класса ТВН должны выполняться следующие условия: φH1min<1, φH2min<1, φH3min<1, φH4min<1, φH1max<1, φH2max<1, φH3max<1, φH4max<1.
Для II класса ТВН должны выполняться следующие условия:
(φH1min>1, φH2min>1, φH3min>1, φH4min>1, φH1max>1, φH2max>1, φH3max>1, φH4max>1.
Для III класса ТВН должны выполняться следующие условия:
(φH1min>1, φH2min>1, φH3min>1, φH4min>1, φH1max>1, φH2max>1, φH3max>1, φH4max>1.
В блоке 6 определяется принадлежность параметров наружного воздуха к расчетной зоне ТДМ. Условия попадания параметров наружного воздуха в ту или иную зону представлены в табл.1 и табл.2.
В блоке 7 определяются параметры воздуха в контрольной точке, в области требуемых параметров воздуха в помещении. Данные параметры приведены в табл.1 и табл.2.
В блоке 8 - определяющем второй уровень управления, выполняется регулирование для поддержания заданных параметров воздуха в помещении посредством воздействия на регулирующие органы аппаратов для обработки воздуха. На основании программы, заложенной в блоке автоматизации и управления, подаются команды на автоматическое регулирование и управление исполнительными механизмами, соответствующие установленному технологическому режиму работы.
На фиг.№2 приведена принципиальная схема системы кондиционирования воздуха при полной комплектации, с указанием наименования оборудования. Под полной комплексацией понимается наличие в схеме всех требуемых аппаратов для тепловлажностной обработки воздуха, необходимых для комплексной обработки воздуха. Приведенная принципиальная схема, с указанием мест установки датчиков для контроля параметров и функционирования, необходима для пояснения работы предлагаемого способа.
Пример построения зон на I-d-диаграмме для первого и второго класса тепловлажностных нагрузок СКВ с пароувлажнителем приведен соответственно на фиг.3 и фиг.4. Заглавными буквами русского алфавита, в кружках на данных рисунках, одновременно обозначаются зоны и соответствующие им режимы работы СКВ, указанные в табл.1 и табл.2. Границы зон определяются заданной областью (У1, У2, У3 и У4) нормируемых параметров воздуха в помещениях, максимальным и минимальным расходами наружного воздуха, рециркуляционного воздуха, а также значениями тепловлажностных нагрузок в любой момент времени. Каждой зоне соответствует единственный оптимальный режим обработки воздуха.
Анализируя и сравнивая работу СКВ при различных классах ТВН, очевидно, что алгоритмы работы СКВ, а соответственно и процессы обработки воздуха, различны. Так, например, для зоны А, при первом классе ТВН, минимальное количество наружного воздуха необходимо нагреть в калорифере первого подогрева до изотермы tH1min, затем увлажнить до точки H1min и подать в помещение. В то время как для зоны А, при втором классе ТВН, минимальное количество наружного воздуха необходимо нагреть в калорифере первого подогрева до изотермы tH1min, затем смешать с рециркуляционным (1-я рециркуляция), полученную воздушную смесь увлажнить и подать в помещение. В обоих случаях параметры воздуха в помещении необходимо поддерживать в точке У1.
Заявляемый способ автоматического управления параметрами воздуха является промышленно применимым, так как включает в себя способы управления, применяемые ранее, а также существующие технические средства позволяют его реализовать в полном объеме.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ СИСТЕМОЙ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА | 2014 |
|
RU2587065C2 |
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПАРАМЕТРАМИ ВОЗДУХА | 2007 |
|
RU2350850C1 |
СПОСОБ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА ЧИСТЫХ ПОМЕЩЕНИЙ | 2013 |
|
RU2560318C2 |
Способ тепловлажностной обработки воздуха в центральной многозональной системе кондиционирования | 1986 |
|
SU1379577A1 |
ПРИТОЧНО-ВЫТЯЖНАЯ УСТАНОВКА С УТИЛИЗАЦИЕЙ ТЕПЛА | 2007 |
|
RU2345287C1 |
КОНДИЦИОНЕР С ВИХРЕВЫМИ ЭЛЕМЕНТАМИ | 2008 |
|
RU2363893C1 |
ВОЗДУХОРАСПРЕДЕЛИТЕЛЬ | 2011 |
|
RU2479799C1 |
СИСТЕМА КОНДИЦИОНИРОВАНИЯ ВОЗДУХА | 1995 |
|
RU2099643C1 |
ПРИТОЧНО-ВЫТЯЖНАЯ УСТАНОВКА С УТИЛИЗАЦИЕЙ ТЕПЛА | 2012 |
|
RU2493501C1 |
СПОСОБ ИНДИВИДУАЛЬНОГО РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА В КУПЕ ПАССАЖИРСКОГО ВАГОНА И СИСТЕМА КОНДИЦИОНИРОВАНИЯ ВОЗДУХА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2004 |
|
RU2270117C1 |
Изобретение относится к автоматическому управлению системой кондиционирования в целях поддержания заданного температурно-влажностного режима в помещениях. Сущность заключается в том, что на основании измеренных тепловлажностных параметров и расходов забираемого наружного, приточного и удаляемого воздуха, а также вычисленных в блоке автоматизации и управления тепло- и влаговыделений в помещении, зоны и параметров воздуха в контрольной точке функционирование блока автоматизации и управления организовано на двух уровнях таким образом, что на первом уровне выполняются необходимые измерения параметров забираемого наружного, приточного и удаляемого воздуха, вычисляются тепло- и влагоизбытки в помещении, параметры воздуха в опорных точках, класс тепловлажностных нагрузок, вычисляются границы зон изменения параметров наружного воздуха и определяется конкретная расчетная зона, в пределах которой находятся текущие параметры наружного воздуха, устанавливается соответствующая этой расчетной зоне контрольная точка и далее в зависимости от комбинации класса тепловлажностных нагрузок и расчетной зоны устанавливается соответствующий технологический режим работы кондиционера, предусматривающий использование воздуха I и II рециркуляции посредством подключения соответствующих регулирующих органов аппаратов тепловлажностной обработки воздуха, а на втором уровне для установленного технологического режима работы обеспечивается регулирование для поддержания заданных параметров воздуха в помещении посредством воздействия на регулирующие органы аппаратов для обработки воздуха. При работе в автоматическом режиме поддержания температурно-влажностного режима (ТВР) в помещении обеспечивается оптимальное, из условий энергосбережения, потребление различных видов энергии. Регулирование параметров внутреннего воздуха происходит по их отклонению от требуемых значений. Применение данного способа дает возможность учитывать класс ТВН и предусматривает использование воздуха I и II рециркуляции, а также повышает точность поддерживаемых параметров в помещении за счет программного способа управления. 4 ил., 2 табл.
Способ автоматического управления системой кондиционирования воздуха по оптимальным режимам путем измерения тепловлажностных параметров и расходов забираемого наружного, приточного и удаляемого воздуха, а также вычисления в блоке автоматизации и управления тепло- и влаговыделений в помещении, зоны и параметров воздуха в контрольной точке, отличающийся тем, что функционирование блока автоматизации и управления организовано на двух уровнях, причем на первом уровне выполняются необходимые измерения параметров забираемого наружного, приточного и удаляемого воздуха, вычисляются тепло- и влагоизбытки в помещении, параметры воздуха в опорных точках, класс тепловлажностных нагрузок, вычисляются границы зон изменения параметров наружного воздуха и определяется конкретная расчетная зона, в пределах которой находятся текущие параметры наружного воздуха, устанавливается соответствующая этой расчетной зоне контрольная точка и далее в зависимости от комбинации класса тепловлажностных нагрузок и расчетной зоны устанавливается соответствующий технологический режим работы кондиционера, предусматривающий использование воздуха I и II рециркуляции посредством подключения соответствующих регулирующих органов аппаратов тепловлажностной обработки воздуха, а на втором уровне, для установленного технологического режима работы, обеспечивается регулирование для поддержания заданных параметров воздуха в помещении посредством воздействия на регулирующие органы аппаратов для обработки воздуха.
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПАРАМЕТРАМИ ВОЗДУХА | 2007 |
|
RU2350850C1 |
RU 2005269 C1, 30.12.1993 | |||
US 20050082277 A1, 21.04.2005 | |||
Система кондиционирования воздуха | 1984 |
|
SU1341465A1 |
WO 2007107837 A2, 27.09.2007 | |||
Способ автоматического управления параметрами воздуха в помещении | 1976 |
|
SU576496A1 |
Способ автоматического регулирования параметров воздуха в помещении | 1978 |
|
SU769221A1 |
DE 102005020934 A1, 12.01.2006. |
Авторы
Даты
2012-10-10—Публикация
2011-06-14—Подача