Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для проведения процессов теплообмена, в частности, для утилизации низкопотенциальной тепловой энергии.
Известен теплообменник, содержащий корпус, разделенный на полости (камеры охлаждения и нагрева) горячего и холодного газов (горячей и холодной среды), в которых происходит охлаждение горячего и нагрев холодного газов, плоским диском на вращающемся валу с размещенными на нем параллельно валу тепловыми трубами, состоящими из корпуса с расположенными в нем зонами испарения, транспорта (капиллярного материала-фитиля) и конденсации, частично заполненными рабочей жидкостью [А.с. СССР №1673824, Мкл. F28D 15/02, 1989].
Основным недостатком известного теплообменника является необходимость подвода механической энергии для вращения вала, что снижает его эффективность и надежность.
Более близким к предлагаемому изобретению является мультитеплотрубный теплообменник, который содержит корпус, внутри которого расположены камера охлаждения, снабженная патрубками входа и выхода горячей среды, зона испарения которой состоит из испарительных гильз, размещенных в шахматном порядке, с внутренней поверхностью покрытой полосами капиллярного материала (фитиля), образующими между собой канавки, коллекторная камера со слоем фитиля, соединенная через отверстия с открытыми торцами испарительных гильз и полосами фитиля камеры охлаждения соответственно, камера нагрева, снабженная патрубками входа и выхода холодной среды, в которой зона конденсации состоит из конденсационных гильз, также размещенных в шахматном порядке со смещением своих осей относительно осей испарительных гильз, крышки которых соединены с фитилем коллекторной камеры подъемными фитилями, проходящими через центр конденсационных гильз, не касаясь поверхности их внутренних стенок, соединенных с отверстиями в крышке коллекторной камеры, причем зона транспорта состоит из соприкасающихся между собой полос в испарительных гильзах камеры охлаждения, массива в коллекторной камере и подъемных в конденсационных гильзах камеры нагрева фитилей [Патент РФ №2367872, Мкл. F28D 15/00, 2009].
Основными недостатками известного мультитеплотрубного теплообменника являются сложность и громоздкость его конструкции, обусловленная наличием промежуточной коллекторной камеры и разделением тепловых труб на два элемента: испарительные гильзы и конденсационные гильзы, а также недостаточное предохранение от опасности образования паровой пленки на внутренней поверхности испарительных и конденсационных гильз, что снижает его эффективность и надежность.
Техническим результатом предлагаемого кожухомультитеплотрубного теплообменника является повышение эффективности и надежности.
Технический результат достигается в кожухомультитеплотрубном теплообменнике, который содержит корпус, внутри которого расположены камеры охлаждения и нагрева, снабженные патрубками входа и выхода горячего и холодного теплоносителей соответственно, отделенные друг от друга перегородкой, через отверстия в которой пропущены тепловые трубы, размещенные в шахматном порядке, каждая из которых снабжена подъемными фитилями, проходящими через их центры, соприкасаясь с их торцами и не касаясь поверхности внутренних боковых стенок, соединенных в торцах с решеткой, выполненной из полос капиллярного материала, образующих ячейки, которая покрывает внутренние боковую и торцевую поверхности тепловых труб, причем каждая из них делится снаружи перегородкой на зону испарения, находящуюся в камере охлаждения, и зону конденсации, находящуюся в камере нагрева.
На фиг.1 приведен общий вид, фиг.2 - разрез, фиг.3, 4 - узел предлагаемого кожухомультитеплотрубного теплообменника (КМТТТО).
КМТТТО состоит из корпуса 1, внутри которого расположены камера охлаждения 2, снабженная патрубками входа и выхода горячего теплоносителя 3 и 4 соответственно, и камера нагрева 5, снабженная патрубками входа и выхода холодного теплоносителя 6 и 7 соответственно, отделенные друг от друга перегородкой 8, через отверстия в которой пропущены тепловые трубы 9, размещенные в шахматном порядке, каждая из которых снабжена подъемными фитилями 10, проходящими через их центры, соприкасаясь с их торцами и не касаясь поверхности внутренних боковых стенок, соединенных в торцах с решеткой 11, выполненной из полос капиллярного материала, образующих ячейки 12, которая покрывает внутренние боковую и торцевую поверхности тепловых труб, причем каждая из них делится снаружи перегородкой 8 на зону испарения 13, находящуюся в камере охлаждения 2, и зону конденсации 14, находящуюся в камере нагрева 5.
Предлагаемый КМТТТО работает следующим образом. Предварительно, перед началом работы из камер 2, 5 удаляют воздух и закачивают рабочую жидкость, которую выбирают в зависимости от температурного потенциала холодного и горячего теплоносителя до полного насыщения фитилей 10 и капиллярного материала решеток 11 (штуцера для удаления воздуха и подачи рабочей жидкости на фиг.1-4 не показаны), в количестве, достаточном для заполнения объема их пор и пара в паровом пространстве. После этого в камеру охлаждения 2 КМТТТО через патрубок 3 подают горячий теплоноситель (жидкость или газ), а в камеру нагрева 5 через патрубок 6 - холодный теплоноситель (жидкость или газ). Непрерывная циркуляция холодного и горячего теплоносителей обеспечивает интенсивный теплообмен рабочего тела (пара и жидкости) в камерах нагрева и охлаждения 10 и 2 с этими теплоносителями за счет создания в камерах 2 и 5 турбулентных потоков. При нагреве испарительных зон 13 тепловых труб 9, размещенных в камере охлаждения 2, происходит испарение рабочей жидкости, находящейся в капиллярном материале решетки 11 и подъемных фитилях 10, которые транспортируют рабочую жидкость в зону испарения 13, предотвращают образование паровой пленки на внутренней поверхности испарительной зоны тепловых труб 9 и таким образом интенсифицируют процесс испарения. Процесс испарения протекает на внутренней поверхности испарительных зон 13 в ячейках 12, в результате чего образуется пар. Полученный пар по паровому пространству попадает в конденсационные зоны 14 тепловых труб 9, размещенные в камере нагрева 5, где конденсируется на их внутренней поверхности в ячейках 12, образовавшийся конденсат под действием капиллярных сил и сил тяжести поступает на их дно, поглощается подъемными фитилями 10, соединенными с решеткой 11, и подается в испарительную зону 13, после чего цикл повторяется. При этом процесс теплообмена с горячим и холодным теплоносителями протекает со скоростью, многократно превышающей скорость аналогичного процесса в обычных теплообменниках, обусловленной высокими значениями коэффициента теплопередачи в процессах испарения и конденсации, а покрытие решеткой из полос капиллярного материала боковых поверхностей и торцов тепловых труб по сравнению с покрытием их просто полосами пористого материала позволяет уменьшить толщину паровой пленки на теплообменной поверхности, что также интенсифицирует процесс теплопередачи [А.Н.Плановский, П.И.Николаев. Процессы и аппараты химической и нефтехимической технологии. - М.: Химия, 1987, с.146; В.В.Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. - Минск: Высш. школа, 1988, с.106; Тепловые трубы и теплообменники: от науки к практике. Сборник научн. трудов. М., 1990, с.22].
Таким образом, конструкция предлагаемого КМТТТО и использование решетки из полос капиллярного материала, образующих ячейки на внутренней поверхности тепловых труб, в совокупности с достоинствами известного мультитеплотрубного теплообменника значительно упрощает устройство, повышает эксплуатационные характеристики, что позволяет использовать его в промышленных масштабах и обеспечивает высокую эффективность и надежность, в том числе и при утилизации низкопотенциальной энергии.
название | год | авторы | номер документа |
---|---|---|---|
Двухкамерный мультитеплотрубный теплообменник | 2024 |
|
RU2826915C1 |
МУЛЬТИТЕПЛОТРУБНЫЙ ТЕПЛООБМЕННИК | 2008 |
|
RU2367872C1 |
МУЛЬТИТЕПЛОТРУБНАЯ ПАРОЭЖЕКТОРНАЯ ХОЛОДИЛЬНАЯ МАШИНА | 2010 |
|
RU2439449C1 |
Мультитеплотрубный пластинчатый теплообменник | 2023 |
|
RU2805472C1 |
МУЛЬТИТЕПЛОТРУБНЫЙ ДВИГАТЕЛЬ | 2007 |
|
RU2339821C2 |
КОАКСИАЛЬНЫЙ СТУПЕНЧАТЫЙ МУЛЬТИТЕПЛОТРУБНЫЙ ДВИГАТЕЛЬ | 2010 |
|
RU2454549C1 |
МУЛЬТИТЕПЛОТРУБНАЯ ПАРОТУРБИННАЯ УСТАНОВКА С КАПИЛЛЯРНЫМ КОНДЕНСАТОРОМ | 2013 |
|
RU2564483C2 |
МУЛЬТИТЕПЛОТРУБНАЯ ХОЛОДИЛЬНАЯ МАШИНА | 2006 |
|
RU2320939C1 |
КОАКСИАЛЬНЫЙ МУЛЬТИТЕПЛОТРУБНЫЙ ДВИГАТЕЛЬ | 2008 |
|
RU2379526C1 |
МУЛЬТИТЕПЛОТРУБНАЯ ЭЛЕКТРОСТАНЦИЯ | 2007 |
|
RU2352792C1 |
Изобретение относится к теплоэнергетике и может быть использовано для проведения процессов теплообмена, в частности, для утилизации низкопотенциальной тепловой энергии. В кожухомультитеплотрубном теплообменнике, который содержит корпус, внутри которого расположены камеры охлаждения и нагрева, снабженные патрубками входа и выхода горячего и холодного теплоносителей, с размещенными в нем в шахматном порядке тепловыми трубами, зонами испарения, транспорта (фитиля) и конденсации камеры охлаждения и нагрева отделены друг от друга перегородкой, через отверстия в которой пропущены тепловые трубы, каждая из которых снабжена подъемными фитилями и решеткой, покрывающей внутренние боковую и торцевую поверхности тепловых труб и выполненной из полос капиллярного материала, образующих ячейки, причем подъемные фитили, проходящие через центры тепловых труб, соприкасаясь с их торцевыми поверхностями, не касаются их внутренней боковой поверхности, и каждая тепловая труба разделена снаружи перегородкой на зону испарения, находящуюся в камере охлаждения, и зону конденсации, находящуюся в камере нагрева. Технический результат - повышение эффективности и надежности теплообменника. 4 ил.
Кожухомультитеплотрубный теплообменник, включающий корпус, внутри которого расположены камеры охлаждения и нагрева, снабженные патрубками входа и выхода горячего и холодного теплоносителей, с размещенными в нем в шахматном порядке тепловыми трубами, зонами испарения, транспорта (фитиля) и конденсации, отличающийся тем, что камеры охлаждения и нагрева отделены друг от друга перегородкой, через отверстия в которой пропущены тепловые трубы, каждая из которых снабжена подъемными фитилями и решеткой, покрывающей внутренние боковую и торцевую поверхности тепловых труб и выполненной из полос капиллярного материала, образующих ячейки, причем подъемные фитили, проходящие через центры тепловых труб, соприкасаясь с их торцевыми поверхностями, не касаются их внутренней боковой поверхности, и каждая тепловая труба разделена снаружи перегородкой на зону испарения, находящуюся в камере охлаждения, и зону конденсации, находящуюся в камере нагрева.
МУЛЬТИТЕПЛОТРУБНЫЙ ТЕПЛООБМЕННИК | 2008 |
|
RU2367872C1 |
Плоская тепловая труба | 1989 |
|
SU1673824A1 |
CN 201374890 Y, 30.12.2009 | |||
US 2005205239 A1, 22.09.2005. |
Авторы
Даты
2012-10-27—Публикация
2010-06-23—Подача