СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ДВУХФАЗНОЙ ТРЕХКОМПОНЕНТНОЙ СРЕДЫ Российский патент 2012 года по МПК G01F1/20 

Описание патента на изобретение RU2466356C1

Изобретение относится к нефтедобывающей промышленности, а именно к способам определения дебита нефтяных скважин без предварительной сепарации газа из продукции скважины.

Известен способ определения содержания компонентов многофазной среды, включающий зондирование потока акустическими импульсами, регистрацию прошедших через среду импульсов приемником в ограниченном контролируемом объеме потока, образованном парой «источник излучения - приемник», фиксирование времени прохождения импульсов через контролируемый объем и вычисление расхода компонентов на основе закономерностей движения двухфазной трехкомпонентной среды [1]. Однако данный способ приводит к существенным ошибкам при определении расхода двухфазной среды из-за неучета влияния растворенного в нефти и воде нефтяного газа при давлениях и температурах в измеряемом потоке.

Наиболее близким к предлагаемому решению является способ измерения расхода двухфазной трехкомпонентной среды, включающий калибровку многофазного расходомера, обработку результатов калибровочных работ, синтез математической модели движения двухфазной трехкомпонентной среды, определение интервала расходов жидкости и нефтяного газа, при котором имеет место допустимая погрешность расчета расходов нефти, воды и газа [2].

Однако этот способ приводит к ошибкам при определении покомпонентного расхода продукции нефтяной скважины из-за неправильного выбора математической модели для расчета покомпонентного расхода.

Задачей предлагаемого технического решения является разработка такого способа измерения расхода двухфазной трехкомпонентной среды, при реализации которого можно было бы исключить ошибки, обусловленные неправильным выбором математической модели движения двухфазной трехкомпонентной среды.

Техническим результатом изобретения является повышение точности измерения расхода двухфазной трехкомпонентной среды за счет выбора математической модели движения двухфазной трехкомпонентной среды с минимальной средней абсолютной погрешностью из альтернативного списка моделей.

Поставленный технический результат достигается тем, что в способе измерения расхода двухфазной трехкомпонентной среды, включающем калибровку многофазного расходомера, обработку результатов калибровочных работ, синтез математической модели движения двухфазной трехкомпонентной среды, определение интервала расходов нефти, воды и нефтяного газа, при котором имеет место допустимая погрешность расчета расходов нефти, воды и нефтяного газа, проводят калибровочные работы для получения обучающих экспериментальных точек, по обучающим экспериментальным точкам синтезируют ряд моделей с различными максимальными погрешностями при определении расхода жидкости, проводят калибровочные работы для получения проверочных экспериментальных точек, по проверочным экспериментальным точкам проводят расчеты расхода жидкости, используя модели движения двухфазной трехкомпонентной среды с различными максимальными погрешностями, и по минимуму средней абсолютной погрешности на проверочных экспериментальных точках выбирают математическую модель для расчета покомпонентного расхода двухфазной трехкомпонентной среды.

Способ реализуется следующим образом. Проводится калибровка многофазного расходомера для получения обучающих экспериментальных точек В таблице результатов калибровочных работ для акустического доплеровского расходомера расходу жидкости соответствуют показания датчиков доплеровского сдвига частоты, обводненности, газонасыщенности, давления и температуры. По этим экспериментальным данным синтезируют ряд математических моделей движения двухфазной трехкомпонентной среды с различными максимальными погрешностями. При этом количество моделей может изменяться от 5-6 до 8-10. Максимальная погрешность модели, синтезированной на основе обучающих точек, может превышать допустимую погрешность кратно. За счет удаления ряда точек с максимальной погрешностью последнюю необходимо снизить до величины в 2-3 раза меньшей допустимой погрешности. Таким образом, синтезируется ряд моделей. Первая из них имеет самую большую максимальную погрешность, вторая за счет удаления точки с максимальной погрешностью имеет максимальную погрешность с меньшей величиной. Третья модель имеет максимальную погрешность с меньшей величиной по сравнению со второй моделью. И последняя модель имеет максимальную погрешность самую низкую. Проводят калибровочные работы для получения проверочных экспериментальных точек. По этим проверочным точкам, используя в качестве входных показателей показания датчиков доплеровского сдвига частоты, обводненности, газонасыщенности, давления и температуры, определяют с помощью вышеуказанных моделей расход жидкости. Фиксируется погрешность определения расхода жидкости по моделям с различными максимальными погрешностями. За оптимальную модель принимают ту, которая имеет минимальную среднюю абсолютную погрешность на проверочных экспериментальных точках.

Пример конкретной реализации способа иллюстрируется материалами результатов калибровочных работ на проливной установке прибора «Ультрафлоу». По обучающим экспериментальным точкам синтезированы шесть моделей, максимальная погрешность и среднеквадратическое отклонение которых приведены в таблице.

Таблица Модель 1 2 3 4 5 6 Максимальная абсолютная ошибка 0,1157 0,0498 0,0406 0,0185 0,0113 0,0071 Среднеквадратическое отклонение ошибки 0,0488 0,0260 0,0160 0,0069 0,0048 0,0039

Модели имеют вид:

Y=b0+b1*X1+b22+b33+b4*X4+b5*X5+b1313+b1112+b3332,

где Y - расход жидкости;

X1 - доплеровский сдвиг частоты;

Х2 - обводненность продукции скважины;

Х3 - газонасыщенность;

Х4 - давление в контролируемом объеме потока;

Х5 - температура в контролируемом объеме потока.

По этим моделям движения двухфазной трехкомпонентной среды проведены расчеты расхода жидкости для восемнадцати проверочных экспериментальных точек. Результаты расчетов приведены на чертеже. Как видно из данного чертежа, наименьшую среднюю абсолютную погрешность имеет четвертая модель. Эта модель рекомендуется для расчета покомпонентного расхода продукции нефтяной скважины.

Предлагаемое техническое решение позволит существенно снизить погрешность при определении покомпонентного расхода двухфазной трехкомпонентной среды.

Источники информации

1. Патент РФ №2138023 «Способ определения расхода компонентов многофазной среды. // Мельников В.И., Дробков В.П. - 1999.09.20.

2. Письмаров М.Н. Расчет расхода трехкомпонентной среды при калибровке многофазного расходомера. Инновации и актуальные проблемы техники и технологий: материалы Всероссийской научно-практической конференции молодых ученых в 2-х т. / М.Н.Письмаров, К.Ю.Плесовских; под ред. А.А.Большакова. - Саратов: Саратовский государственный технический университет, 2009. - Т.1. - 360 с. - С.110-112.

Похожие патенты RU2466356C1

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ДВУХФАЗНОЙ ТРЕХКОМПОНЕНТНОЙ СРЕДЫ 2012
  • Качалов Олег Борисович
  • Ямпурин Николай Петрович
  • Баранова Альбина Вячеславовна
  • Улюшкин Александр Вениаминович
  • Акишин Евгений Вячеславович
RU2527667C2
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ДВУХФАЗНОЙ ТРЕХКОМПОНЕНТНОЙ СРЕДЫ 2011
  • Косарев Владимир Иванович
  • Добрынин Валерий Витальевич
  • Кочнев Виктор Вячеславович
  • Качалов Олег Борисович
  • Ямпурин Николай Петрович
  • Плесовских Ксения Юрьевна
RU2476827C1
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ДВУХФАЗНОЙ ТРЕХКОМПОНЕНТНОЙ СРЕДЫ 2011
  • Качалов Олег Борисович
  • Ямпурин Николай Петрович
  • Плесовских Ксения Юрьевна
  • Второв Артем Андреевич
  • Голубева Елена Александровна
  • Затравкина Елена Илларионовна
  • Сахаров Алексей Владимирович
  • Улюшкин Александр Вениаминович
  • Чиклунов Александр Викторович
RU2475706C2
СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ НЕФТИ 2013
  • Качалов Олег Борисович
  • Ямпурин Николай Петрович
  • Баранова Альбина Вячеславовна
  • Волков Дмитрий Евгеньевич
  • Корноухова Екатерина Александровна
  • Шабаева Ирина Александровна
  • Плесовских Ксения Юрьевна
RU2527138C1
МНОГОФАЗНЫЙ РАСХОДОМЕР КОРИОЛИСА 2007
  • Баруа Сантану
  • Лансанган Робби
RU2431119C2
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ДВУХФАЗНОЙ ТРЕХКОМПОНЕНТНОЙ СРЕДЫ 2012
  • Качалов Олег Борисович
  • Ямпурин Николай Петрович
  • Плесовских Ксения Юрьевна
RU2513661C2
СПОСОБ КАЛИБРОВКИ МНОГОФАЗНОГО РАСХОДОМЕРА 2012
  • Добрынин Валерий Витальевич
  • Кочнев Виктор Вячеславович
  • Косарев Владимир Иванович
RU2515422C2
СИСТЕМА ИЗМЕРЕНИЯ ПОКОМПОНЕНТНОГО МАССОВОГО РАСХОДА ТРЕХКОМПОНЕНТНОГО ПОТОКА 2007
  • Фурмаков Евгений Федорович
  • Петров Олег Федорович
  • Маслов Юрий Викторович
  • Новиков Андрей Юрьевич
RU2333464C1
СИСТЕМА ИЗМЕРЕНИЯ ПОКОМПОНЕНТНОГО МАССОВОГО РАСХОДА ТРЕХКОМПОНЕНТНОГО ПОТОКА НЕФТЯНЫХ СКВАЖИН 2007
  • Фурмаков Евгений Федорович
  • Петров Олег Федорович
  • Маслов Юрий Викторович
  • Петров Виктор Михайлович
  • Новиков Андрей Юрьевич
RU2336500C1
СИСТЕМА ИЗМЕРЕНИЯ ПОКОМПОНЕНТНОГО МАССОВОГО РАСХОДА ТРЕХКОМПОНЕНТНОГО ГАЗОЖИДКОСТНОГО ПОТОКА 2007
  • Фурмаков Евгений Федорович
  • Петров Олег Федорович
  • Маслов Юрий Викторович
  • Новиков Андрей Юрьевич
RU2334950C1

Реферат патента 2012 года СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ДВУХФАЗНОЙ ТРЕХКОМПОНЕНТНОЙ СРЕДЫ

Изобретение относится к нефтедобывающей промышленности для измерения расхода двухфазной трехкомпонентной среды. Способ измерения расхода двухфазной трехкомпонентной среды включает калибровку многофазного расходомера, обработку результатов калибровочных работ, синтез математической модели движения двухфазной трехкомпонентной среды, определение интервала расходов жидкости и нефтяного газа, при котором имеет место допустимая погрешность расчета расходов нефти, воды и нефтяного газа. При этом калибровочные работы проводят для получения обучающих экспериментальных точек. Синтезируют ряд моделей движения двухфазной трехкомпонентной среды с различными максимальными погрешностями при определении расхода жидкости. Проводят калибровочные работы для получения проверочных экспериментальных точек, по которым проводят расчеты расхода жидкости, используя модели движения двухфазной трехкомпонентной среды с различными максимальными погрешностями. По минимуму средней абсолютной погрешности на проверочных экспериментальных точках выбирают модель для расчета покомпонентного расхода двухфазной трехкомпонентной среды. Технический результат - повышение точности измерения расхода двухфазной трехкомпонентной среды. 1 ил., 1 табл.

Формула изобретения RU 2 466 356 C1

Способ измерения расхода двухфазной трехкомпонентной среды, включающий калибровку многофазного расходомера, обработку результатов калибровочных работ, синтез математической модели движения двухфазной трехкомпонентной среды, определение интервала расходов жидкости и нефтяного газа, при котором имеет место допустимая погрешность расчета расходов нефти, воды и нефтяного газа, отличающийся тем, что проводят калибровочные работы для получения обучающих экспериментальных точек, по обучающим экспериментальным точкам синтезируют ряд моделей движения двухфазной трехкомпонентной среды с различными максимальными погрешностями при определении расхода жидкости, проводят калибровочные работы для получения проверочных экспериментальных точек, по проверочным экспериментальным точкам проводят расчеты расхода жидкости, используя модели движения двухфазной трехкомпонентной среды с различными максимальными погрешностями, и по минимуму средней абсолютной погрешности на проверочных экспериментальных точках выбирают модель для расчета покомпонентного расхода двухфазной трехкомпонентной среды.

Документы, цитированные в отчете о поиске Патент 2012 года RU2466356C1

Письмаров М.Н
Расчет расхода трехкомпонентной среды при калибровке многофазного расходомера
Инновации и актуальные проблемы техники и технологий: материалы Всероссийской научно-практической конференции молодых ученых
/ М.Н.Письмаров, К.Ю.Плесовских; под
ред
А.А.Большакова
- Саратов: Саратовский государственный технический университет, 2009,

RU 2 466 356 C1

Авторы

Качалов Олег Борисович

Ямпурин Николай Петрович

Плесовских Ксения Юрьевна

Баранова Альбина Вячеславовна

Войнова Юлия Андреевна

Улюшкин Александр Вениаминович

Даты

2012-11-10Публикация

2011-03-25Подача