Изобретение относится к невзрывным наземным импульсным источникам сейсмических волн, применяемых при проведении сейсморазведочных работ.
Известен сейсмоисточник невзрывного типа (Ивашин В.В., Иванников Н.А. Импульсные электромагнитные сейсмоисточники: особенности и перспективы совершенствования. Журнал «Приборы и системы разведочной геофизики», №2, 2005, с.9-14), содержащий жесткую плиту-излучатель, опертый на нее пригруз и электромагнитный двигатель, магнитопровод индуктора которого с обмоткой возбуждения закреплен на пригрузе, а якорь двигателя оперт на плиту через стойки и отделен от магнитопровода индуктора воздушным зазором. При подаче в обмотку возбуждения импульса тока между якорем и магнитопроводом индуктора возникает сила, передаваемая через стойки на плиту. Плита под действием этой силы смещается в направлении грунта, при этом происходит деформация грунта и в нем формируется сейсмическая волна. Магнитопровод индуктора под действием силы двигателя ускоряется вверх, в результате зазор между магнитопроводом индуктора и якорем выбирается. В момент выбора зазора действие силы на плиту прекращается, а ускоренный пригруз с магнитопроводом индуктора и якорем перемещаются в поле силы тяжести на некоторую высоту, определяемую скоростью пригруза в момент выбора зазора.
Поскольку грунт является средой, имеющей упругие свойства, после фазы сжатия грунта наступает фаза его разжатия, в течение которой плита под действием упругих сил грунта ускоряется вверх. В результате этого грунт разжимается и плита, получив при разжатии грунта значительную скорость, «подлетает» над грунтом и затем падает на грунт, что приводит к созданию сейсмической волны-помехи, снижающей качество выполняемых сейсморазведочных работ.
Известен (прототип) невзрывной сейсмоисточник с импульсным двигателем индукционно-динамического типа (Патент РФ №2369883, БИ №28, 2009 г.), содержащий жесткую плиту-излучатель, опертый на него пригруз и импульсный двигатель, установленный с возможностью создания силы между плитой и пригрузом. При работе такого сейсмоисточника, как и в случае сейсмоисточника, принятого за аналог, под действием силы плита деформирует грунт, а пригруз ускоряется вверх. За фазой сжатия грунта следует фаза его разжатия и перемещение («подскок») плиты выше уровня ее исходного положения на грунте и затем происходит повторное воздействие плиты на грунт, создающее волну-помеху, что снижает сейсмическую эффективность сейсмоисточника и качество выполнения сейсморазведочных работ.
Задача, на решение которой направлено изобретение, состоит в повышении сейсмической эффективности сейсмоисточника. Технический результат предложенного решения состоит в уменьшении скорости перемещения плиты после момента рабочего цикла сжатия ею грунта и интенсивности создаваемой сейсмической волны-помехи.
Упомянутая задача и технический результат достигаются тем, что предложенное техническое решение содержит жесткую плиту-излучатель, опертый на нее первый пригруз, импульсный двигатель с возможностью приложения создаваемой им силы между плитой-излучателем и первым пригрузом, а на плиту-излучатель оперт второй пригруз.
Изобретение снабжено иллюстрациями:
Фиг.1 - конструктивная схема предложенного сейсмоисточника;
Фиг.2 - графики изменения прилагаемой к плите-излучателю силы, скорости и перемещения плиты;
Фиг.3 - конструктивное выполнение второго пригруза;
Фиг.4 - конструктивное выполнение сейсмоисточника с импульсным двигателем электромагнитного типа;
Фиг.5 - конструктивное выполнение сейсмоисточника с импульсным двигателем индукционно-динамического типа.
Сейсмоисточник (фиг.1) содержит плиту-излучатель 1, опертый на плиту первый пригруз 2, источник 3 импульсной силы и опертый на плиту второй пригруз 4.
Сейсмоисточник работает следующим образом. При действии импульсной силы 5 (фиг.2) пригруз 2 ускоряется вверх, а плита 1 - вниз. Скорость 6 смещения плиты 1 за время t1 действия силы 5 увеличивается, преодолевая силу реакции грунта, нарастающую по мере смещения 7 плиты. На интервале времени от t1 до t2 скорость 6 смещения плиты уменьшается до нуля, а полученная от источника силы 5 кинетическая энергия плиты 1 преобразуется в энергию упругой деформации грунта и частично выделяется в виде энергии, затраченной на неупругие деформации грунта и энергию излучаемой сейсмической волны, интенсивность которой пропорциональна квадрату скорости 6 смещения (нагружения) грунта плитой 1. Возврат плиты 1 в исходное положение на интервале времени от t2 до t3 (стадия разжатия грунта) происходит при увеличении скорости 6 смещения плиты. В момент времени t3 происходит ударное взаимодействие плиты 1 со вторым пригрузом 4. При неупругом взаимодействии двух масс послеударная скорость плиты снижается. Например, при равенстве масс плиты 1 и второго пригруза 4 она уменьшится вдвое, а половина кинетической энергии плиты 1 в процессе удара выделится в тепловую энергию. Уменьшение скорости Δt плиты 1 при ударе приводит к уменьшению скорости изменения деформации грунта и соответственно интенсивности волны-помехи, излучаемой при t больше t3.
Характер ударного взаимодействия в момент t3 плиты 1 и второго пригруза 4 определяется значением коэффициента восстановления, для уменьшения которого второй пригруз (фиг.3) может быть выполнен в виде короба 8 с полостью 9, частично заполненной металлическими кусочками 10 шаровидной формы весом от 1 до 3 г. При ударе плиты 1 о корпус 8 на кусочки 10, помещенные в его полости, действует часть ударного механического импульса, поэтому кусочки ускоряются вверх, воздействуют (трутся) друг с другом и с поверхностью полости короба 8, что приводит к снижению коэффициента восстановления за счет выделения потерь при движении кусочков 10.
Второй пригруз 4 может быть выполнен распределенным по периметру плиты 1 или в виде отдельных секций, размещенных на поверхности плиты. Короб 8 второго пригруза 4 может быть выполнен из материала с небольшим удельным весом, например из алюминиевого сплава, пластика и т.д. Основное влияние на снижение скорости движения плиты 1 в процессе ее ударного взаимодействия со вторым пригрузом 4 оказывает масса помещенного в коробе сыпучего материала 10.
Импульсный двигатель 3 (фиг.1), создающий силовое воздействие между плитой-излучателем 1 и первым пригрузом 2, в зависимости от особенностей применения сейсмоисточника может быть выполнен гидравлическим, пневматическим, электрическим или иного типа.
Особенности сейсмоисточника по фиг.1 для случая применения в нем двигателя электромагнитного типа показаны на конструктивной схеме фиг.4. Плита 1 выполнена со стойками 11, на которые опирается якорь 12 двигателя 3, магнитопровод 13 индуктора которого закреплен с обмоткой возбуждения 14 на первом пригрузе 2, опертом посредством его стоек 15 на плиту-излучатель 1. Второй пригруз 4 помещен на плите 1 между стойками 15 первого пригруза. Индуктор 13 двигателя и его якорь 12 отделены друг от друга рабочим воздушным зазором.
При подаче импульса тока в обмотку возбуждения 14 между магнитопроводом якоря 12 и магнитопроводом 13 индуктора двигателя 3 создается импульс силы 5 (фиг.2). Через стойки 11 сила 5 действует на плиту 1, которая под действием этой силы смещается в направлении грунта и создает его деформацию 7. Эта же сила 5 ускоряет пригруз 3 вверх в течение времени от t0 до t1 выбора зазора между якорем 12 и индуктором 13 двигателя 3. Момент времени t1 выбора зазора соответствует длительности импульса силы 5. К моменту времени t3 завершаются фаза сжатия грунта (время от t0 до t1) и фаза его разжатия (время от t2 до t3). В момент времени t3 происходит удар плиты 1 о второй пригруз 4, в результате которого скорость 6 плиты 1 и ее кинетическая энергия уменьшаются, что приводит к уменьшению перемещения плиты вверх над ее первоначальным положением при t0 и интенсивности создаваемой при t больше t3 сейсмоисточником сейсмической волны. Для снижения коэффициента восстановления при ударе плиты 1 о второй пригруз 4 он может быть выполнен с полостью внутри, в которую помещены, например, кусочки материала.
Предложенное техническое решение (фиг.1) может быть применено при создании наземных сейсмоисточников с индукционно-динамическим двигателем (фиг.5), применение которого позволяет существенно уменьшить вес сейсмоисточников и расширить возможности их применения в труднодоступных для проведения сейсморазведочных работ горных или заболоченных участках местности и т.д.
Сейсмоисточник (фиг.5) содержит излучающую плиту 1, опертый на нее первый пригруз 2, в состав которого входит пригрузочная масса 15 и скрепленные с ней немагнитная плита 16 из неэлектропроводного материала. Импульсный индукционно-динамический двигатель 3 содержит обмотку возбуждения 17, помещенную в пазу плиты 16, и якорь двигателя в виде закрепленной на плите 1 пластины 18 из материала высокой электропроводности, например меди. Второй пригруз 4 оперт на плиту 1.
При подаче в катушку возбуждения 17 импульса тока в прилегающей к ней пластине 18 индуктируется ток и между катушкой возбуждения 17 и пластиной 18 создается импульс силы 5. При этом плита 1 перемещается в направлении грунта со скоростью 6 (фиг.2), обеспечивая создание деформации 7 грунта и формирование сейсмической волны. Первый пригруз 2 под действием силы 5 ускоряется вверх в поле силы тяжести. В момент времени t3 плита 1 со скоростью 6 возвращается в исходное положение и происходит ее ударное взаимодействие со вторым пригрузом 4. При этом часть кинетической энергии плиты 1 выделяется в тепловую энергию, а скорость плиты 1 уменьшается, что приводит к уменьшению излучения сейсмической энергии волны-помехи при t больше t3 и повышению эффективности работы сейсмоисточника.
название | год | авторы | номер документа |
---|---|---|---|
НЕВЗРЫВНОЙ ИМПУЛЬСНЫЙ НАЗЕМНЫЙ СЕЙСМОИСТОЧНИК С ИНДУКЦИОННО-ДИНАМИЧЕСКИМ ПРИВОДОМ | 2012 |
|
RU2522143C2 |
ИМПУЛЬСНЫЙ НАЗЕМНЫЙ НЕВЗРЫВНОЙ СЕЙСМОИСТОЧНИК | 2011 |
|
RU2475778C1 |
ИМПУЛЬСНЫЙ НЕВЗРЫВНОЙ НАЗЕМНЫЙ СЕЙСМОИСТОЧНИК | 2003 |
|
RU2233000C1 |
ИМПУЛЬСНЫЙ ИСТОЧНИК ПОПЕРЕЧНЫХ СЕЙСМИЧЕСКИХ ВОЛН | 2013 |
|
RU2534000C1 |
НЕВЗРЫВНОЙ ИМПУЛЬСНЫЙ НАЗЕМНЫЙ СЕЙСМОИСТОЧНИК | 2012 |
|
RU2515421C2 |
ИМПУЛЬСНЫЙ ЭЛЕКТРОМАГНИТНЫЙ ИСТОЧНИК СЕЙСМИЧЕСКИХ ВОЛН | 2011 |
|
RU2466429C1 |
ИМПУЛЬСНЫЙ НЕВЗРЫВНОЙ НАЗЕМНЫЙ СЕЙСМОИСТОЧНИК | 2008 |
|
RU2369883C1 |
ИМПУЛЬСНЫЙ НЕВЗРЫВНОЙ СЕЙСМОИСТОЧНИК | 2009 |
|
RU2453870C2 |
СЕЙСМОИСТОЧНИК ДЛЯ СОЗДАНИЯ СЕЙСМИЧЕСКИХ ВОЛН НА АКВАТОРИЯХ | 2003 |
|
RU2231087C1 |
КОДОИМПУЛЬСНЫЙ СЕЙСМОИСТОЧНИК | 2011 |
|
RU2457509C1 |
Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных работ. Заявлен сейсмоисточник, предназначенный для создания сейсмических волн посредством деформации грунтового полупространства с поверхности земли. Он содержит жесткую излучающую плиту, пригрузочную массу и импульсный двигатель электромагнитного, индукционно-динамического или иного типа. Развиваемая двигателем сила приложена между плитой-излучателем и пригрузочной массой (первым пригрузом). Отличительной особенностью сейсмоисточника является применение опертого на плиту-излучатель дополнительного (второго) пригруза, что снижает уровень генерируемых сейсмоисточником волн-помех. Технический результат: уменьшение скорости перемещения плиты после момента рабочего цикла сжатия ею грунта и интенсивности создаваемой сейсмической волны-помехи. 5 ил.
Наземный невзрывной импульсный сейсмоисточник, содержащий жесткую плиту-излучатель, опертый на нее первый пригруз, импульсный двигатель с возможностью приложения его силы между плитой-излучателем и первым пригрузом, отличающийся тем, что на плиту-излучатель оперт второй пригруз.
СПОСОБ ВОЗБУЖДЕНИЯ СЕЙСМИЧЕСКИХ КОЛЕБАНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2007 |
|
RU2381528C2 |
ИМПУЛЬСНЫЙ НЕВЗРЫВНОЙ НАЗЕМНЫЙ СЕЙСМОИСТОЧНИК | 2008 |
|
RU2369883C1 |
ЭЛЕКТРОМАГНИТНЫЙ ИСТОЧНИК СЕЙСМИЧЕСКИХ ВОЛН | 2001 |
|
RU2216753C2 |
НЕВЗРЫВНОЙ СЕЙСМОИСТОЧНИК С ЭЛЕКТРОМАГНИТНЫМ ПРИВОДОМ | 2003 |
|
RU2242027C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ ГРУНТА ИЗЛУЧАЮЩЕЙ ПЛИТОЙ-АНТЕННОЙ ИМПУЛЬСНОГО СЕЙСМОИСТОЧНИКА С ЭЛЕКТРОМАГНИТНЫМ ПРИВОДОМ | 2005 |
|
RU2265234C1 |
US 20100149922 A1, 17.06.2010. |
Авторы
Даты
2012-11-20—Публикация
2011-08-03—Подача