СОЛНЕЧНЫЙ МОДУЛЬ Российский патент 2012 года по МПК F24J2/42 H01L31/04 

Описание патента на изобретение RU2468305C1

Изобретение относится к области фотоэлектроники и предназначено для преобразования потока солнечного излучения в электроэнергию.

Известно, что солнечный модуль - это батарея взаимосвязанных солнечных элементов, заключенных под обычным или текстурным стеклом (http://www.energy-bio.ru/pfoto3.htm), который можно выбрать в качестве прототипа. Обычно солнечный модуль для придания большей герметичности и жесткости конструкции помещают в алюминиевый или иного материала каркас, а сами солнечные элементы располагаются параллельно текстурному стеклу. Чем интенсивнее свет, падающий на фотоэлементы солнечных элементов, и чем больше их площадь, тем больше вырабатывается электричества и тем больше сила тока. Модули классифицируются по пиковой мощности в ваттах (Вт). Ватт - единица измерения мощности. Один пиковый ватт (Wp) - мощность установки, измеренная в стандартных тестовых условиях (STC), т.е. когда солнечное излучение в 1 кВт/м2 падает на элемент при температуре 25°С и спектре AM 1.5.

Такая интенсивность достигается при хороших погодных условиях, когда солнце находится в зените (http://www.nau-ra.ru/dosug/s/124/496/?lang=ru). Чтобы выработать один пиковый ватт, нужен один элемент размером 10×10 см. Более крупные модули, площадью 1 м × 40 см, вырабатывают около 40-50 Вт. Так, например, солнечная батарея типа ES(A)-40 при площади 0,8 м2 вырабатывает мощность 40 Вт (http://www.techno-as.com.ua/index.php?level_path=0-5-25&language=russian).

Недостаток такого солнечного модуля заключается в том, что в реальных условиях солнечная освещенность редко достигает величины 1 кВт/м2. Более того, на солнце модуль нагревается значительно выше номинальной температуры. Оба этих фактора снижают производительность модуля. В типичных условиях средняя производительность солнечного модуля составляет около 6 Вт/ч в день и 2000 Вт/ч в год на 1 Вт. Кроме того, для достижения наибольшей отдачи солнечный модуль оснащают системой пространственной ориентации, регулирующей угол наклона модуля в горизонтальной и вертикальной плоскостях, что связано с дополнительными расходами. Для сравнения: 5 ватт-час - это количество энергии, потребляемое 50-ваттной лампочкой в течение 6 минут (50 Вт×0,1 ч=5 Вт·ч) или портативным радиоприемником в течение часа (5 Вт×1 ч=5 Вт·ч). То есть, солнечные модули приведенной конструкции из-за большой занимаемой площади и малой мощности нерационально использовать в качестве источника энергии для привода транспортного средства. Так, например, в Перу разработано мототакси на солнечной энергии (http://www.energv-bio.ru/pfoto3.htm), на крыше которого установлено 12 солнечных панелей мощностью 40 Ватт, занимающих большую площадь и предназначенных для питания электромотора и фар. К тому же они обладают большой парусностью, что ставит под сомнение эксплуатацию мототакси в ветренную погоду.

Технической задачей предлагаемого изобретения является снижение площади солнечного модуля с одновременным увеличением КПД.

Для достижения данной цели солнечные элементы устанавливают перпендикулярно текстурному стеклу. Солнечные элементы могут быть использованы на жесткой и гибкой основе. Расчеты показывают, что, например, при размещении в конструкции солнечного модуля с площадью текстурного стекла площадью 1 м2 полосок двусторонних солнечных элементов размерами 1×0.01 и толщиной 0.001 метра с промежутком 0.001 м, площадь солнечного модуля увеличивается в 10 раз при неизменных размерах элементов корпуса. С учетом того, что солнечные элементы установлены перпендикулярно стеклу (параллельно потоку солнечного излучения), мощность солнечного модуля, естественно, упадет. Но даже с учетом этих потерь расчетная мощность увеличивается в несколько раз. Кроме того, предложенное конструктивное решение позволяет упростить систему пространственной ориентации солнечного модуля. Для этого солнечный модуль достаточно вращать синхронно перемещению солнца на небосводе только в горизонтальной плоскости. При этом лучи солнца всегда будут параллельны плоскостям солнечных элементов и будут беспрепятственно проходить сквозь зазоры между солнечными элементами. Установка солнечных элементов перпендикулярно с зазорами также способствует стабилизации их температурного режима, т.е на КПД солнечного модуля мало будет влиять нагрев их поверхности. Для повышения эффективности солнечного модуля за солнечными элементами установлена текстурированная отражающая панель с геометрическим рельефом (Крапивко Г.И., Хлопенова И.А., ААЭКС, №2(12), 2003, Современные технические средства, комплексы и системы. Повышение КПД кремниевых фотоэлектронных преобразователей методом лазерной гравировки). Такая панель позволяет существенно (до единиц процентов) уменьшить коэффициент отражения света от поверхности прибора, более эффективно использовать инфракрасную часть солнечного спектра за счет увеличения длины пробега длинноволновых фотонов в базовой области, снижать рекомбинационные потери вследствие уменьшения толщины базы.

Фрагмент конструкции солнечного модуля приведен на чертеже.

Солнечный модуль включает каркас 1, лицевая сторона герметизирована структуированным стеклом 2. Сторона, противоположная лицевой, снабжена текстурированной отражающей панелью 3 с геометрическим рельефом. Внутри каркаса 1 перпендикулярно стеклу 2 с зазором (в данной конструкции через 1 мм) установлены солнечные элементы 4 с двухсторонней чувствительностью, т.е обе плоскости (с большей площадью) солнечного элемента являются фотоактивными.

Солнечный модуль рекомендуется монтировать на штанге следящей системы пространственной ориентации таким образом, чтобы стекло 2 было параллельно плоскости земли. При таком расположении модуля достигается наименьшая парусность, а отражающая панель 3 будет наиболее эффектно отражать лучи солнца и дополнительно освещать грани солнечных элементов 4. При этом система пространственной ориентации будет вращать солнечный модуль только в горизонтальной плоскости, что благоприятно сказывается на себестоимости изделия. При установке на электромобиле конструкцию корпуса модуля рекомендуется выполнить в виде плоского цилиндра, что позволяет вращать модуль, установленный на крыше транспорта, не выходя за габариты автомобиля и оперативно отслеживать направление падения солнечных лучей при маневрировании.

Похожие патенты RU2468305C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ТОНКОЙ ПЛЕНКИ ДИСЕЛЕНИДА МЕДИ И ИНДИЯ CuInSe 2007
  • Билалов Билал Аругович
  • Гаджиев Тимур Мажлумович
  • Сафаралиев Гаджимет Керимович
RU2354006C1
ОБЪЕМНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ БОЛЬШОЙ МОЩНОСТИ 2014
  • Бабкин Андрей Владимирович
  • Баранов Лев Дмитриевич
  • Бабкин Владимир Андреевич
  • Иванов Алексей Валерьевич
RU2576348C1
ВЕТРОСОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2022
  • Перевалов Валерий Викторович
RU2802563C1
ВЕТРОСОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2022
  • Перевалов Валерий Викторович
RU2802564C1
КРОВЕЛЬНАЯ СОЛНЕЧНАЯ ПАНЕЛЬ 2014
  • Стребков Дмитрий Семенович
  • Кирсанов Анатолий Иванович
  • Иродионов Анатолий Евгеньевич
  • Панченко Владимир Анатольевич
  • Майоров Владимир Александрович
RU2557272C1
СОЛНЕЧНАЯ БАТАРЕЯ КОСМИЧЕСКОГО АППАРАТА БОЛЬШОЙ ПЛОЩАДИ 2006
  • Буланов Вячеслав Васильевич
  • Иванов Виктор Михайлович
  • Успенский Георгий Романович
  • Шувалов Вячеслав Александрович
RU2309093C2
Солнечный фотоэлектрический модуль со стационарным концентратором (варианты) 2015
  • Шевалеевский Олег Игоревич
  • Козлов Сергей Сергеевич
  • Ларина Людмила Леонидовна
  • Пашали Александр Андреевич
  • Александров Михаил Александрович
RU2617041C1
Солнечный модуль с асимметричным параболоцилиндрическим концентратором солнечного излучения 2015
  • Майоров Владимир Александрович
  • Стребков Дмитрий Семенович
  • Трушевский Станислав Николаевич
RU2615242C2
КОНЦЕНТРАТОРНАЯ СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2020
  • Андреев Вячеслав Михайлович
  • Андреева Алена Валерьевна
  • Давидюк Николай Юрьевич
  • Садчиков Николай Анатольевич
  • Чекалин Александр Викторович
RU2740437C1
Гибридная кровельная солнечная панель 2016
  • Стребков Дмитрий Семенович
  • Кирсанов Анатолий Иванович
  • Панченко Владимир Анатольевич
RU2612725C1

Реферат патента 2012 года СОЛНЕЧНЫЙ МОДУЛЬ

Изобретение относится к области фотоэлектроники и предназначено для преобразования потока солнечного излучения в электроэнергию. Изобретение направлено на увеличение активной площади солнечного модуля с одновременным увеличением КПД. Солнечный модуль включает каркас, солнечные элементы, структурированное стекло и текстурированную отражающую панель с геометрическим рельефом. Конструктивные особенности солнечной панели заключаются в том, что солнечные элементы выполнены с двухсторонней чувствительностью и установлены с зазором перпендикулярно структурированному стеклу, а текстурированная отражающая панель с геометрическим рельефом установлена за солнечными элементами. Установка солнечных элементов перпендикулярно способствует увеличению выработки электроэнергии и стабилизации их температурного режима. 1 ил.

Формула изобретения RU 2 468 305 C1

Солнечный модуль, включающий каркас, солнечные элементы, структурированное стекло, текстурированную отражающую панель с геометрическим рельефом, отличающийся тем, что солнечные элементы выполнены с двухсторонней чувствительностью и установлены с зазором перпендикулярно структурированному стеклу, а текстурированная отражающая панель с геометрическим рельефом установлена за солнечными элементами.

Документы, цитированные в отчете о поиске Патент 2012 года RU2468305C1

RU 2009138596 C1, 27.04.2011
СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ (ВАРИАНТЫ) 1998
  • Стребков Д.С.
  • Безруких П.П.
  • Тверьянович Э.В.
  • Иродионов А.Е.
RU2133415C1
СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 1999
  • Стребков Д.С.
  • Тверьянович Э.В.
  • Берсенев М.А.
RU2154243C1
СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА (ВАРИАНТЫ) 2006
  • Стребков Дмитрий Семенович
  • Базарова Елена Геннадьевна
  • Тарасов Всеволод Павлович
RU2303205C1
СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ С КОНЦЕНТРАТОРОМ 1998
  • Безруких П.П.
  • Стребков Д.С.
  • Тверьянович Э.В.
  • Берсенев М.А.
  • Кидяшев Ю.К.
RU2134849C1
WO 2009022973 A1, 19.02.2009.

RU 2 468 305 C1

Авторы

Билалов Билал Аругович

Саркаров Рашид Нусретович

Сафаралиев Гаджимет Керимович

Даты

2012-11-27Публикация

2011-05-27Подача