Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях.
Известна тепловая электрическая станция по патенту РФ №2350760, содержащая конденсатор паровой турбины, декарбонизатор с воздуховодом, в который включены воздухоподогреватель и вентилятор, систему оборотного водоснабжения, включающую градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, состоящей из вытяжной башни и водосборного бассейна, соединенного самотечным перепускным каналом с водоприемным колодцем, при этом вытяжная башня градирни снабжена водораспределительным лотком с разбрызгивающими соплами, оросительным устройством и водоуловителем.
Недостатком при использовании известной тепловой электрической станции является то, что тепловая электрическая станция обладает пониженной экономичностью, так как на тепловой электрической станции не используется теплота конденсации отработавшего в турбине пара, а отводится в окружающую среду с атмосферным воздухом.
Технический результат - повышение экономичности тепловой электрической станции.
Это достигается тем, что тепловая электрическая станция, содержащая конденсатор паровой турбины, декарбонизатор с форсунками и с воздуховодом, в который включены воздухоподогреватель и вентилятор, систему оборотного водоснабжения, включающую градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, состоящей из вытяжной башни и водосборного бассейна, соединенного самотечным перепускным каналом с водоприемным колодцем, при этом вытяжная башня градирни снабжена водораспределительным лотком с разбрызгивающими соплами, оросительным устройством и водоуловителем.
На фиг.1 представлена схема тепловой электрической станции, на фиг.2 - продольный разрез форсунки декарбонизатора.
Тепловая электрическая станция (фиг.1) содержит систему оборотного водоснабжения градирни 1, декарбонизатор 2 с форсунками и с воздуховодом 3, в который включены воздухоподогреватель 4 и вентилятор 5, систему оборотного водоснабжения, включающую градирню, водоприемный колодец 6, самотечный водовод 7, циркуляционный насос 8, напорный трубопровод 9 к конденсатору 1 паровой турбины и сливной напорный трубопровод 10 к градирне, состоящей из вытяжной башни 11 и водосборного бассейна 12, соединенного самотечным перепускным каналом 13 с водоприемным колодцем 6, трубопровод 14, соединяющий вытяжную башню 11 градирни с всасывающим коробом вентилятора 5 для подачи подогретого и насыщенного водяными парами воздуха под насадку декарбонизатора 2, при этом вытяжная башня 11 градирни снабжена водораспределительным лотком 15 с разбрызгивающими соплами 16, оросительным устройством 17 и водоуловителем 18.
Форсунка декарбонизатора 2 (фиг.2) состоит из корпуса 19 и соосно расположенного с ним в верхней части штуцера 20, в котором выполнен расширяющийся канал 21 для подвода жидкости в цилиндрическое отверстие 22, выполненное осесимметрично корпусу 19. Цилиндрическое отверстие 22 плавно переходит в соосное с ним фигурное отверстие 23, выполненное в форме сопла Лаваля. В отверстии 22 корпуса, осесимметрично ему, установлена цилиндрическая вставка-завихритель 24, имеющая внешние периферийные винтообразные нарезные каналы 25. По оси вставки-завихрителя 24 выполнено центральное осевое отверстие 26 с винтовой нарезкой на внутренней поверхности, обратной направлению нарезки каналов 25. Внешние винтообразные нарезные каналы 25 и винтовая нарезка на внутренней поверхности осевого отверстия 26 могут быть выполнены с переменным шагом. Вставка-завихритель 24 устанавливается в корпусе 19 через упругие прокладки 27 и 28 и поджимается штуцером 20 посредством резьбового соединения корпус-штуцер.
Система оборотного водоснабжения с применением градирен содержит градирни, соединенные между собой гидравлическими контурами приготовления и потребления воды. Для одного потребителя (не показано) система включает в себя корпус градирни, в нижней части которой расположен бак для сбора воды с системой подпитки воды, затрачиваемой на испарение. Бак соединен с насосом, который подает охлажденную в градирне воду потребителю через фильтр.
Работа тепловой электрической станции осуществляется следующим образом.
Охлажденная в градирне вода циркуляционным насосом 8 по напорному трубопроводу 9 подается в конденсатор 1 паровой турбины. В конденсаторе 1 циркуляционная вода нагревается за счет теплоты конденсации (парообразования) отработавшего в турбине пара и подается по сливному напорному трубопроводу 10 в водораспределительный лоток 15 вытяжной башни 11.
Из водораспределительного лотка 15 вода поступает в разбрызгивающие сопла 16. С помощью сопел 16 поток воды разбрызгивается и в форме струй и капель падает на оросительное устройство 17, а затем стекает в виде дождя в водосборный бассейн 12. В вытяжной башне 11 градирни навстречу потоку воды движется атмосферный воздух. В процессе непосредственного контакта теплоносителей осуществляется тепло- и массообмен между водой и воздухом, при этом вода охлаждается, а воздух подогревается и насыщается водяными парами. Затем воздух проходит водоуловитель 18, где из него отделяется капельная влага, и через вытяжную башню 11 градирни отводится в атмосферу.
Эффект охлаждения в градирне достигается за счет испарения 1% циркулирующей через градирню воды, которая разбрызгивается форсунками и в виде пленки стекает в бак через сложную систему каналов оросителя навстречу потоку охлаждающего воздуха, нагнетаемого вентиляторами (не показано). Эффективный каплеотделитель позволяет снизить потери воды в результате капельного уноса. Количество капельной влаги, уносимое потоком воздуха, зависит от плотности орошения и при максимальном значении 25 м3/ч·м2) не превышает 0,1% от величины объемного расхода охлаждаемой воды через градирню.
Часть общего потока подогретого и насыщенного водяными парами в вытяжной башне градирни атмосферного воздуха по трубопроводу 14 направляется во всасывающий короб вентилятора 5 и подается под насадку форсунками декарбонизатора 2.
Форсунка декарбонизатора работает следующим образом.
Жидкость в корпус 19 поступает через канал 21 подвода жидкости в штуцере 20, а затем в центральное цилиндрическое отверстие 22. Жидкость начинает свою закрутку в периферийных каналах вставки-завихрителя 24 и одновременно во внутренних каналах центрального осевого отверстия 26 с обратным направлением. Такой поток жидкости на выходе из фигурного отверстия 23 в форме сопла Лаваля хорошо раскрывается за счет центробежных сил, возникающих от вращения жидкости, и мелкодисперсно распределяется внутри конусообразного факела за счет турбулентного течения по оси сопла 23.
Исходная химически очищенная вода подается в декарбонизатор 2, где декарбонизируется встречным потоком воздуха, подаваемого под насадку декарбонизатора из вытяжной башни 11 градирни по трубопроводу 14 вентилятором 5. Декарбонизированная вода направляется в деаэратор, откуда подается, например, на подпитку системы теплоснабжения. В случае, когда температура воздуха, подаваемого из вытяжной башни 11 градирни, недостаточна для осуществления процесса декарбонизации воды, то его направляют в воздухоподогреватель 4, в котором догревают и вентилятором 5 подают под насадку декарбонизатора 2.
Из водосборного бассейна 12 охлажденная вода по самотечному перепускному каналу 13 поступает в водоприемный колодец 6 и в самотечный водовод 7, откуда циркуляционным насосом 8 снова подается в напорный трубопровод 9.
Снабжение тепловой электрической станции системой оборотного водоснабжения градирни уменьшает количество воды, испаряемой в воздух в процессе тепло- и массообмена в насадке декарбонизатора и отводимой с воздухом в атмосферу, что дополнительно повышает экономичность тепловой электрической станции за счет снижения потерь химически очищенной воды с выпаром декарбонизатора.
название | год | авторы | номер документа |
---|---|---|---|
ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ | 2013 |
|
RU2544112C2 |
ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ | 2013 |
|
RU2535188C1 |
ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ | 2011 |
|
RU2472086C1 |
ТЕПЛОВАЯ ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ | 2011 |
|
RU2484265C2 |
ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ КОЧЕТОВА | 2011 |
|
RU2472948C1 |
ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ ТИПА КОЧСТАР | 2011 |
|
RU2472947C1 |
ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ ТИПА КОЧСТАР | 2013 |
|
RU2532862C1 |
ТЕПЛОВАЯ ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ КОЧЕТОВА | 2013 |
|
RU2527261C1 |
ТЕПЛОВАЯ ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ КОЧЕТОВА | 2013 |
|
RU2533773C1 |
ТЕПЛОВАЯ ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ | 2015 |
|
RU2627486C2 |
Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. Тепловая электрическая станция содержит конденсатор паровой турбины, декарбонизатор с воздуховодом, в который включены воздухоподогреватель и вентилятор, систему оборотного водоснабжения, включающую градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, состоящей из вытяжной башни и водосборного бассейна, соединенного самотечным перепускным каналом с водоприемным колодцем, при этом вытяжная башня градирни снабжена водораспределительным лотком с разбрызгивающими соплами, оросительным устройством и водоуловителем, а форсунка декарбонизатора для распыления жидкости содержит корпус, штуцер и соосно расположенную с ними вставку-завихритель. Изобретение позволяет повысить экономичность тепловой электрической станции. 2 ил.
Тепловая электрическая станция, содержащая конденсатор паровой турбины, декарбонизатор с воздуховодом, в который включены воздухоподогреватель и вентилятор, систему оборотного водоснабжения, включающую градирню, водоприемный колодец, самотечный водовод, циркуляционный насос, напорный трубопровод к конденсатору паровой турбины и сливной напорный трубопровод к градирне, состоящей из вытяжной башни и водосборного бассейна, соединенного самотечным перепускным каналом с водоприемным колодцем, при этом вытяжная башня градирни снабжена водораспределительным лотком с разбрызгивающими соплами, оросительным устройством и водоуловителем, отличающаяся тем, что форсунка декарбонизатора для распыления жидкости содержит корпус, штуцер и соосно расположенную с ними вставку-завихритель, а в штуцере выполнен расширяющийся канал для подвода жидкости в цилиндрическое отверстие, которое выполнено осесимметрично корпусу и плавно переходит в соосное с ним фигурное отверстие, выполненное в форме сопла Лаваля, а в цилиндрическом отверстии корпуса, осесимметрично ему, установлена цилиндрическая вставка-завихритель, имеющая внешние периферийные винтообразные нарезные каналы, причем по оси вставки-завихрителя выполнено центральное осевое отверстие с винтовой нарезкой на внутренней поверхности, обратной направлению нарезки каналов, при этом вставка-завихритель устанавливается в корпусе через упругие прокладки и поджимается штуцером посредством резьбового соединения корпус-штуцер.
ТЕПЛОВАЯ ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ | 2007 |
|
RU2350760C2 |
ФОРСУНКА ДЛЯ РАСПЫЛЕНИЯ ЖИДКОСТИ | 2009 |
|
RU2413581C1 |
УСТРОЙСТВО ДЛЯ НАНЕСЕНИЯ ПОЛИМЕРНЫХ ПОРОШКОВЫХ ПОКРЫТИЙ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ | 1999 |
|
RU2163515C1 |
СПОСОБ И ФОРСУНКА ДЛЯ РАСПЫЛЕНИЯ ЖИДКОСТИ | 2005 |
|
RU2296013C2 |
US 4650567 А, 17.03.1987 | |||
US 2004140576 A1, 22.07.2004. |
Авторы
Даты
2012-12-10—Публикация
2011-08-30—Подача