СПОСОБ ТЕПЛОТЕХНИЧЕСКОГО ОБСЛЕДОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ Российский патент 2013 года по МПК G01N25/00 G01N25/66 

Описание патента на изобретение RU2475729C1

Изобретение относится к строительной теплотехнике, в частности к измерениям теплотехнических характеристик помещений зданий и сооружений и вычислению сопротивления теплопередаче наружных ограждающих конструкций (стен, перекрытий, покрытий и т.п.).

Известен метод определения теплотехнических характеристик только ограждающих конструкций, включающих измерение температуры и плотности теплового потока и определение теплофизических характеристик по соответствующим теоретическим зависимостям [1].

Недостатком этого метода является неудобство проведения измерений в связи с установкой датчика на наружной стороне ограждающей конструкции.

Также известен метод тепловизионного контроля качества теплоизоляции ограждающих конструкций, включающий натурные измерения температур и плотности тепловых потоков в реперной точке, определение сопротивления теплопередаче в реперной точке, тепловизионную съемку ограждающей конструкции с последующим определением сопротивления теплопередаче в произвольных точках [2].

Недостатком этого способа является использование сложного и дорогостоящего тепловизионного оборудования, необходимого для определения теплофизических характеристик строительных конструкций, которое требует дополнительных экономических затрат.

Техническим результатом предлагаемого изобретения является обеспечение возможности оценки теплозащитных свойств ограждающих конструкций в нестационарных условиях с применением минимального количества регистрирующих приборов, с сохранением точности и повышением производительности контроля, а также расширение функциональных возможностей.

Научная новизна состоит в комплексном обследовании зданий и сооружений и определении теплотехнических характеристик их ограждающих конструкций в данный момент эксплуатации с целью выбора в дальнейшем наиболее рациональной системы утепления и ее внедрения для достижения эффекта минимального расхода топливно-энергетических ресурсов.

Способ преимущественно применим при определении теплотехнических характеристик панельных домов, так как наличие стыков панелей предполагает значительное увеличение «краевых зон» [3] по сравнению со зданиями и сооружениями других конструктивных решений, и, соответственно, возникает необходимость более адекватного подхода к планированию и проведению замеров.

Способ включает вычисление сопротивления теплопередаче ограждающих конструкций зданий и сооружений посредством измерения относительной влажности воздуха внутри помещения, измерения температуры внутреннего и наружного воздуха, измерения температуры на внутренней поверхности ограждающих конструкций и измерения плотности теплового потока, проходящего через данные конструкции. Измеренные значения плотности теплового потока на выбранных участках заносятся в электронный блок памяти, затем по известным математическим зависимостям вычисляется сопротивление теплопередаче ограждающих конструкций здания.

Способ осуществляется следующим образом.

Теплотехническое обследование производится в зимний период при включенном отоплении здания. Для инструментального контроля используется испытательное оборудование, зарегистрированное в Государственном реестре средств измерений Российской Федерации: термогигрометр, радиационный термометр, измеритель плотности тепловых потоков.

При помощи термогигрометра производятся замеры влажности внутреннего воздуха φint и его температуры tint. Выносной зонд прибора помещается в центр помещения на высоту 1,0-1,5 м от уровня пола. Фиксация измеренных значений влажности и температуры воздуха производится после того, как их отклонения в течение определенного времени не превышают заданных величин.

В зависимости от различных сочетаний полученных значений определяется температура точки росы td либо с помощью самого прибора, обладающего данной функцией, либо по формуле

где а=17,27; b=237,7°C; ln - натуральный логарифм; tint - температура внутреннего воздуха [°C]; φint - относительная влажность [доли] (0<φint<1).

Формула обладает погрешностью ±0,4°C в диапазоне значений 0°C<t<60°C; 0,01<φint<1,0; 0°C<td<50°C.

Определяется нормируемая температура τn внутренней поверхности ограждающей конструкции по формуле

где Δtn - нормируемый температурный перепад [°C], принимаемый по таблице 5 СНиП 23-02-2003 [5].

Если нормируемая температура τn внутренней поверхности ограждающей конструкции выше температуры точки росы td, то ее значение является минимально допустимым и устанавливается в качестве нижнего предела для сигнализации радиационного термометра. В обратном случае минимально допустимой является температура точки росы td, которая устанавливается в качестве нижнего предела для сигнализации.

Радиационным термометром с предустановленным режимом сигнализации производятся зигзагообразные движения по области контролируемой зоны, пока не обследуется вся ее площадь. Если прибор издает соответствующий сигнал, то данная зона подвергается более тщательному сканированию с целью выявления точек с минимальной температурой для дальнейшего измерения в этих точках теплового потока. Недостатком этого способа по сравнению с тепловизионным обследованием является незначительное увеличение времени сканирования ограждающей конструкции.

Вышеизложенный способ можно представить в виде блок-схемы алгоритма теплотехнического обследования, приведенной на рисунке 1.

По этому принципу проводится обследование внутренних поверхностей наружных стен, пола, потолка, внутренних стен и перегородок, светопрозрачных и непрозрачных элементов окна, оконных откосов и всех углов сопряжений.

Полученные данные заносятся в форму, представленную таблицей 1.

Данная методика предполагает более тщательную и качественную подготовку перед проведением измерения плотности теплового потока, которая осуществляется за счет разделения обследуемой ограждающей конструкции на несколько изотермических зон.

Плотность теплового потока, проходящего через ограждающие конструкции, определяется по результатам нескольких измерений в оперативном режиме. В первом случае преобразователи теплового потока размещаются на термически однородных участках, характерных для всей обследуемой ограждающей конструкции, с целью определения усредненной плотности теплового потока и, соответственно, среднего значения сопротивления теплопередаче «по глади». Во втором случае (а при наличии всех трех зон - и в третьем) преобразователи теплового потока размещаются в местах теплопроводных включений с целью определения локальной плотности теплового потока и, соответственно, среднего значения сопротивления теплопередаче «в краевых зонах».

Приведенное сопротивление теплопередаче R0r ограждающей конструкции, имеющей неравномерность температур поверхностей, вычисляется по формуле

где А - площадь испытываемой ограждающей конструкции [м2]; Ai - площадь характерной изотермической зоны [м2]; R0.i - сопротивление теплопередаче характерной зоны [м2·°C/Вт].

Замер и обработка данных производится в соответствии с ГОСТ 26254-84 [4] с тем отличием, что в настоящем способе сопротивление теплопередаче вычисляется без промежуточных замеров температуры внутренней и наружной поверхности ограждающей конструкции.

где αint, αext - коэффициенты теплоотдачи соответственно внутренней и наружной поверхности ограждающих конструкций [Вт/(м2·°C)], принимаемые по таблице 7 СНиП 23-02-2003 [5] и таблице 8 СП 23-101-2004 [6]; δi - толщина i-того слоя конструкции [м]; λi - расчетный коэффициент теплопроводности i-ого слоя [Вт/(м·°С)], принимаемый по приложению Д СП 23-101-2004 [6]; tint и text - средняя температура соответственно внутреннего и наружного воздуха [°C]; τint и τext - средняя температура соответственно внутренней и наружной поверхности ограждающей конструкции [°C]; q - средняя плотность теплового потока, проходящего через ограждающую конструкцию [Вт/м2].

Предлагаемый способ неразрушающего контроля наружных ограждающих конструкций позволяет измерять комплекс необходимых теплотехнических характеристик (влажность и температуру воздуха, температуру поверхности и сопротивление теплопередаче) непосредственно в эксплуатируемом здании с внутренней стороны помещения. Неразрушающий контроль подразумевает измерение параметров объекта, не требующее нарушения целостности его конструкций, то есть такой контроль экономически выгоден.

Настоящая методика может использоваться при обследовании конструкций любой толщины и состава. В данной методике все измерения производятся в оперативном режиме, что уменьшает время их проведения при сохранении точности. Способ является менее трудоемким, не требует сложного тепловизионного оборудования и связанных с этим высоких экономических затрат (стоимость радиационного термометра при наличии необходимых функций, например, звуковой сигнализации по нижнему уровню температуры, находится в пределах 25000 рублей, а стоимость тепловизора около 300000 рублей и выше).

Источники информации

1. Патент РФ №2421711, 2009 г. - аналог.

2. Патент РФ №2285915, 2004 г. - прототип.

3. Корниенко С.В. Повышение энергоэффективности зданий за счет снижения теплопотерь через краевые зоны ограждающих конструкций // Сборник трудов научной конференции НИИСФ РААСН - II академические чтения «Актуальные вопросы строительной физики - энергосбережение и экологическая безопасность». - М., 2005. - С.348-352.

4. ГОСТ 26254-84. Здания и сооружения. Методы определения сопротивления теплопередаче ограждающих конструкций [Текст]. - М.: Госстрой СССР, 1984.

5. СНиП 23-02-2003. Тепловая защита зданий [Текст]. - М.: Госстрой России, 2003.

6. СП 23-101-2004. Проектирование тепловой защиты зданий [Текст]. - М.: ОАО «ЦНИИпромзданий» и ФГУП ЦНС, 2004.

Похожие патенты RU2475729C1

название год авторы номер документа
СПОСОБ КОНТРОЛЯ ТЕПЛОЗАЩИТНЫХ СВОЙСТВ ОГРАЖДАЮЩЕЙ КОНСТРУКЦИИ 2004
  • Лавров Владимир Николаевич
  • Титаев Виталий Александрович
  • Сосин Юрий Дмитриевич
RU2285915C2
СПОСОБ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ МНОГОСЛОЙНЫХ ОБЪЕКТОВ 2005
RU2316760C2
СПОСОБ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ СОПРОТИВЛЕНИЯ ТЕПЛОПЕРЕДАЧЕ СТРОИТЕЛЬНОЙ КОНСТРУКЦИИ 2011
  • Походун Анатолий Иванович
  • Соколов Александр Николаевич
  • Соколов Николай Александрович
RU2480739C1
Способ определения приведенного термического сопротивления неоднородной ограждающей конструкции в климатической камере 2017
  • Данилов Николай Давыдович
  • Докторов Иван Алексеевич
  • Федотов Петр Анатольевич
RU2657332C1
СИСТЕМА ДИСТАНЦИОННОГО УПРАВЛЕНИЯ ИНЖЕНЕРНЫМИ СИСТЕМАМИ ЖИЛОГО ЗДАНИЯ 2016
  • Полищук Илья Семенович
  • Беспрозванный Александр Александрович
RU2621770C1
СПОСОБ СМЕЩЕНИЯ ТОЧКИ РОСЫ К НАРУЖНОЙ ПОВЕРХНОСТИ В ЛОКАЛЬНЫХ ЗОНАХ СТЕНОВОГО ОГРАЖДЕНИЯ 2001
  • Коробко В.И.
RU2191237C1
СПОСОБ ОЦЕНКИ ТЕПЛОЗАЩИТНЫХ СВОЙСТВ НАРУЖНЫХ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЗДАНИЙ И СООРУЖЕНИЙ В УСЛОВИЯХ НЕСТАЦИОНАРНОЙ ТЕПЛОПЕРЕДАЧИ ПО РЕЗУЛЬТАТАМ ИСПЫТАНИЙ В НАТУРНЫХ УСЛОВИЯХ 2006
  • Дыбок Василий Васильевич
  • Дыбок Ксения Васильевна
  • Кямяря Александр Робертович
  • Лазуренко Наталья Владимировна
  • Могутов Владимир Александрович
  • Юденич Виктор Серафимович
RU2321845C2
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОТЕХНИЧЕСКИХ КАЧЕСТВ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЗДАНИЙ 2012
  • Ройфе Владлен Семенович
RU2497106C1
СПОСОБ ТЕПЛОВОГО КОНТРОЛЯ СОПРОТИВЛЕНИЯ ТЕПЛОПЕРЕДАЧЕ МНОГОСЛОЙНОЙ КОНСТРУКЦИИ В НЕСТАЦИОНАРНЫХ УСЛОВИЯХ ТЕПЛОПЕРЕДАЧИ 2009
  • Абрамова Елена Вячеславовна
  • Будадин Олег Николаевич
  • Иванушкин Евгений Федорович
  • Слитков Михаил Николаевич
RU2420730C2
Способ теплового контроля сопротивления теплопередачи многослойной конструкции в нестационарных условиях теплопередачи 2016
  • Щеглов Марк Алексеевич
  • Будадин Олег Николаевич
  • Ерофеев Олег Игоревич
  • Козельская Софья Олеговна
RU2640124C2

Реферат патента 2013 года СПОСОБ ТЕПЛОТЕХНИЧЕСКОГО ОБСЛЕДОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ

Использование: изобретение относится к строительной теплотехнике, в частности к измерениям теплотехнических характеристик помещений зданий и сооружений и вычислению сопротивления теплопередаче наружных ограждающих конструкций (стен, перекрытий, покрытий и т.п.). Сущность: в способе определения комплекса теплотехнических свойств помещений зданий и сооружений в натурных (эксплуатационных) условиях, включающем измерение температуры внутреннего и наружного воздуха, измеряют относительную влажность воздуха внутри помещения и температуру на внутренней поверхности ограждающих конструкций, определяют температуру точки росы и нормируемую температуру, сравнивают указанные температуры и выбирают тот параметр, который имеет наибольшее значение, используют выбранное значение в радиационном термометре в качестве нижнего предела сигнализации, используют радиационный термометр с предустановленным режимом сигнализации для обследования контролируемой зоны с целью выявления точек с минимальной температурой, измеряют в этих точках плотность теплового потока, проходящего через данные конструкции, и вычисляют приведенное сопротивление теплопередаче ограждающих конструкций. Технический результат: обеспечение возможности оценки теплотехнических характеристик помещений и теплозащитных свойств ограждающих конструкций в нестационарных условиях с применением минимального количества регистрирующих приборов при сохранении точности и повышении производительности контроля. 3 з.п. ф-лы, 1 ил., 1 табл.

Формула изобретения RU 2 475 729 C1

1. Способ определения комплекса теплотехнических свойств помещений зданий и сооружений в натурных (эксплуатационных) условиях, включающий измерение температуры внутреннего и наружного воздуха, отличающийся тем, что измеряют относительную влажность воздуха внутри помещения и температуру на внутренней поверхности ограждающих конструкций, определяют температуру точки росы и нормируемую температуру, сравнивают указанные температуры и выбирают тот параметр, который имеет наибольшее значение, используют выбранное значение в радиационном термометре в качестве нижнего предела сигнализации, используют радиационный термометр с предустановленным режимом сигнализации для обследования контролируемой зоны, с целью выявления точек с минимальной температурой, измеряют в этих точках плотность теплового потока, проходящего через данные конструкции, и вычисляют приведенное сопротивление теплопередаче ограждающих конструкций.

2. Способ по п.1, отличающийся тем, что измерения производят в нестационарном режиме теплообмена.

3. Способ по п.1, отличающийся тем, что осуществляют разделение обследуемой ограждающей конструкции на несколько изотермических зон.

4. Способ по п.1, отличающийся тем, что измерение теплового потока производят в оперативном режиме.

Документы, цитированные в отчете о поиске Патент 2013 года RU2475729C1

СПОСОБ КОНТРОЛЯ ТЕПЛОЗАЩИТНЫХ СВОЙСТВ ОГРАЖДАЮЩЕЙ КОНСТРУКЦИИ 2004
  • Лавров Владимир Николаевич
  • Титаев Виталий Александрович
  • Сосин Юрий Дмитриевич
RU2285915C2
СПОСОБ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ МНОГОСЛОЙНЫХ ОБЪЕКТОВ 2002
RU2219534C1
СПОСОБ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2008
  • Будадин Олег Николаевич
  • Абрамова Елена Вячеславовна
  • Батов Георгий Павлович
  • Юмштык Николай Григорьевич
RU2383008C1
СПОСОБ ОЦЕНКИ ТЕПЛОЗАЩИТНЫХ СВОЙСТВ НАРУЖНЫХ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ ЗДАНИЙ И СООРУЖЕНИЙ В УСЛОВИЯХ НЕСТАЦИОНАРНОЙ ТЕПЛОПЕРЕДАЧИ ПО РЕЗУЛЬТАТАМ ИСПЫТАНИЙ В НАТУРНЫХ УСЛОВИЯХ 2006
  • Дыбок Василий Васильевич
  • Дыбок Ксения Васильевна
  • Кямяря Александр Робертович
  • Лазуренко Наталья Владимировна
  • Могутов Владимир Александрович
  • Юденич Виктор Серафимович
RU2321845C2
US 2009046759 A1, 19.02.2009.

RU 2 475 729 C1

Авторы

Ахременко Сергей Аврамович

Викторов Дмитрий Александрович

Ященкова Марина Александровна

Даты

2013-02-20Публикация

2011-09-13Подача