АКУСТООПТИЧЕСКИЙ МОДУЛЯТОР Российский патент 2013 года по МПК G02F1/11 

Описание патента на изобретение RU2476916C1

Изобретение относится к акустооптике и лазерной технике, в частности к управлению характеристиками коллимированного монохроматического излучения.

Во многих практических задачах используется модулированное оптическое излучение, в частности для передачи сигналов (аналоговых и цифровых), для периодического воздействия на объект, для внутрирезонаторной модуляции излучения в лазерах и т.п. Акустооптические (АО) модуляторы являются одними из наиболее эффективных, они позволяют формировать модулирующее воздействие наиболее общего вида со временем переключения до 1 мкс.

Известно много видов АО модуляторов (В.И.Балакший и др. Физические основы акустооптики. - М.: Радио и связь, 1985, стр.170, рис.8.1 и табл.6.2).

АО модулятор (патент US №4759613) включает в себя светозвукопровод из прозрачного для света материала, к которому прикреплено средство для возбуждения ультразвуковой (УЗ) волны, у которого две грани имеют оптическое качество обработки и служат для ввода модулируемого и вывода модулированного светового пучка. Часто грань кристалла, противоположную излучателю, располагают наклонно по отношению к падающему на нее акустическому пучку, так, чтобы отраженный от нее пучок распространялся в виде другой акустической моды в направлении боковых граней под углом, при котором не возникает отражения назад в область распространения светового пучка. Обычно также места падения акустического пучка на грани кристалла покрывают поглощающим звук материалом. Данный патент принят за прототип.

АО модуляторы работают следующим образом. С помощью прикрепленного к кристаллическому светозвукопроводу излучателя звука (пьезопреобразователя) возбуждается акустическая (ультразвуковая) волна, которая за счет фотоупругого эффекта создает движущуюся дифракционную решетку. Световой пучок, который необходимо модулировать (обычно лазерный или монохроматический), направляют на светозвукопровод так, чтобы он падал на решетку под определенным углом (углом Брегга). В результате рассеяния на решетке свет частично (или полностью) дифрагирует и меняет направление распространения, частоту и фазу, а главное - амплитуду. Коэффициент дифракции определяется мощностью ультразвука Рак, длиной взаимодействия L и длиной волны модулируемого излучения λ:

где M2 - коэффициент акустооптического качества кристалла. Эта зависимость позволяет осуществлять управление интенсивностью дифрагированной волны путем изменения мощности ультразвука, в частности путем включения и выключения последней.

Чтобы модулятор работал эффективно, необходимо также определить ориентацию взаимодействующих пучков света и звука. Обычно используют ортогональную схему, в которой направление распространения света лежит под небольшим углом к оси симметрии эллипсоида показателей преломления среды, а направление распространения звука ортогонально этой оси. Диаграмма волновых векторов при дифракции в модуляторе на основе изотропной среды показана на фиг.1, где kn - волновой вектор падающей световой волны, k - волновой вектор дифрагировавшей световой волны, Куз - волновой вектор звуковой волны.

Направление распространения волн и их поляризация определяют эффективное значение коэффициента АО качества M2. При прочих равных условиях выбирается геометрия с максимальным коэффициентом М2. Однако для произвольно выбранных направлений и поляризаций значение М2 равно нулю или мало, что требует технически недостижимых значений акустической мощности для получения эффекта. Поэтому в технике используют те кристаллы, для которых величина АО качества М2 выше, а для них - известные из теоретических расчетов и экспериментально исследованные направления. Такие расчеты и исследования в настоящее время проведены только для одноосных кристаллов.

Недостатки такого модулятора проявляются в двух аспектах.

1. Известные используемые кристаллы не гарантируют высокую лучевую стойкость кристалла, т.е. при модуляции высокоэнергетического лазерного излучения светозвукопровод может испытывать разрушение.

2. Известные модуляторы обеспечивают модуляцию лишь одной линейной поляризации. Для задач модуляции лазерного излучения, которое, как правило, линейно поляризовано, этого достаточно. Однако в целом указанное свойство ограничивает область применения таких модуляторов.

Техническим результатом, получаемым от использования изобретения, является возможность использовать его для лазерных пучков высокой мощности вместе с возможностью достижения высокого коэффициента дифракции.

Поставленный технический результат достигают за счет того, что в известном акустооптическом модуляторе светового пучка, содержащем кристаллический светозвукопровод с размещенным на его грани ультразвуковым излучателем и двумя боковыми гранями оптического качества для ввода и вывода указанного оптического излучения, светозвукопровод выполнен из моноклинного кристалла со структурой KR(WO4)2, где R - редкоземельный элемент, являющегося кристаллом, используемом в качестве активной среды для генерации высокоинтенсивного лазерного излучения.

При этом ультразвуковой излучатель размещен на грани кристалла, перпендикулярной оси Ng эллипсоида коэффициентов преломления кристалла (Ю.И.Сиротин, М.П.Шаскольская. Основы кристаллографии. - М.: Наука, 1979. 640 стр.).

Диаграмма волновых векторов при дифракции в модуляторе на основе двуосных кристаллов со структурой KR(WO4)2, где R - редкоземельный элемент, приведена на фиг.2, где верхние индексы в волновых векторах m, g и p обозначают направление поляризации соответствующей волны.

При использовании светозвукопровода из моноклинных кристаллов, выполненных из калий-гадолиниевого вольфрамата KGd(WO4)2, калий-иттриевого вольфрамата KY(WO4)2, калий-иттербиевого вольфрамата KYb(WO4)2, калий-лютециевого вольфрамата KLu(WO4)2, достигается полезный эффект - высокая лучевая прочность вместе с возможностью достижения высокого коэффициента дифракции, а направления распространения ультразвука и света определяются теми же требованиями.

В частности, в случае, если в акустооптическом модуляторе ультразвуковой излучатель выполнен для продольных акустических волн, а входная оптическая грань светозвукопровода перпендикулярна оси Np или оси Nm эллипсоида, осуществляется модуляция неполяризованного света вследствие примерного равенства величины эффективности дифракции для излучения, имеющего разное линейное направление поляризации.

Изобретение поясняется чертежами. На фиг.3 представлено устройство АО модулятора, на фиг.4 - принципиальная схема работы модулятора.

АО модулятор (фиг.3) содержит кристаллический светозвукопровод (1) с размещенным на нем ультразвуковым излучателем (2), светозвукопровод выполнен из кристаллов со структурой KR(WO4)2, где R - редкоземельный элемент, относящихся к моноклинным двуосным кристаллам. Ультразвуковой излучатель размещен на грани кристалла, перпендикулярной оси Ng эллипсоида коэффициентов преломления кристалла. Боковые входная (3) и выходная (4) грани выполнены оптического качества. Грань (5), противоположная излучателю, скошена для предотвращения отражения распространяющегося ультразвукового пучка в обратном направлении.

АО модулятор работает следующим образом (фиг.4).

Для получения максимального полезного эффекта, а именно высокого коэффициента дифракции света, в светозвукопроводе (1) возбуждают ультразвуковую волну посредством ультразвукового излучателя (2) в направлении оси Ng эллипсоида коэффициентов преломления кристалла, а входящий световой пучок (6) направляют через оптическую входную грань (3) в направлении оси Nm эллипсоида коэффициентов преломления кристалла либо в направлении оси Np, соответствующей оси симметрии второго порядка. В каждом из этих случаев свет должен падать на ультразвуковую волну под углом Брегга θBr, составляющем обычно несколько градусов к нормали. Дифрагированный свет (7), удовлетворяющий условию Брегга, отклоняется вследствие дифракции и выходит из кристалла через выходную оптическую грань (4). Недифрагированный световой пучок (8) проходит светозвукопровод без изменения направления. Интенсивность отклоненного пучка (7) определяется мощностью высокочастотного электрического сигнала (9), подаваемого на ультразвуковой излучатель (2). Изменяя эту мощность, модулируют интенсивность света как дифрагированного пучка, так и недифрагированного. Возбужденная ультразвуковая волна, распространяясь по светозвукопроводу, достигает противоположной излучателю грани (5), покрытой, как правило, слоем поглощающего вещества (10), и вследствие наклона этой грани отражается в сторону боковой грани и не отражается назад в область распространения световых пучков.

Следует отметить также, что в случае возбуждения продольной ультразвуковой волны и при ориентации входной боковой грани перпендикулярно оси Np или оси Nm эллипсоида коэффициентов преломления эффективность дифракции для двух собственных линейных поляризаций световых волн высока, а коэффициент дифракции примерно одинаков, и при этом световые пучки обеих поляризаций не отклоняются от плоскости взаимодействия, образованной направлением падения светового пучка (kn) и направлением распространения ультразвука (Kуз).

Это очень важно, так как позволяет осуществлять модуляцию неполяризованного света, что обеспечивается примерным равенством величины эффективности дифракции для излучения имеющего разное линейное направление поляризации. В общем случае акустооптические модуляторы не обладают таким свойством, что при работе с неполяризованным лазерным излучением приводит к его заметной линейной поляризации в результате модуляции.

При промежуточных направлениях распространения света также имеет место эффективная дифракция световых волн обеих поляризаций, однако направления распространения световых пучков разной поляризации различаются: один из них с поляризацией Ng распространяется в плоскости взаимодействия, а второй выходит из плоскости взаимодействия, так что пучки с разной поляризацией разделяются (и дифрагированные и недифрагированные).

Также необходимо отметить, что в модуляторе можно использовать и сдвиговую ультразвуковую волну с поляризацией по Nm - в этом случае имеет место эффективная дифракция для света с поляризацией Ng.

При использовании указанных материалов в качестве акустооптической среды достигается следующий эффект. Благодаря высокой лучевой стойкости такой АО модулятор может быть использован для модуляции высокоинтенсивных лазерных пучков, т.е. приложениях, требующих мощного лазерного излучения, например в материалообработке (раскрой металла, сварка, маркировка и т.п.).

Кроме того, на этих материалах можно создать гибридные элементы, осуществляющие как генерацию лазерного излучения, так и управление его характеристиками, например использовать его в качестве активной среды, в которой при этом может возбуждаться акустическая волна для модуляции или отклонения лазерного пучка для целей внутрирезонаторной модуляции добротности (как в патенте US №4057770).

Реализуемость заявленного АО модулятора была подтверждена изготовлением и тестированием модулятора на кристалле альфа-калий-гадолиниевого вольфрамата, эффективная дифракция на котором достигалась при величине мощности ультразвука 2-3 Вт. Реализуемость с использованием других вышеперечисленных кристаллов подтверждается тем, что для всех четырех указанных кристаллов измеренные значения фотоупругих констант и скоростей звука имеют близкие значения.

Похожие патенты RU2476916C1

название год авторы номер документа
ДВУХКРИСТАЛЬНЫЙ АКУСТООПТИЧЕСКИЙ МОДУЛЯТОР 2019
  • Мазур Михаил Михайлович
  • Мазур Любовь Ивановна
  • Шорин Владимир Николаевич
  • Рябинин Александр Владимирович
RU2703930C1
Способ модуляции лазерного излучения и устройство для его осуществления 2019
  • Молчанов Владимир Яковлевич
  • Юшков Константин Борисович
  • Науменко Наталья Федоровна
  • Чижиков Александр Ильич
  • Гуров Василий Викторович
  • Захаров Никита Геннадьевич
  • Павлюк Анатолий Алексеевич
RU2699947C1
Акустооптический лазерный затвор с выводом тепловой энергии из резонатора лазера 2020
  • Молчанов Владимир Яковлевич
  • Юшков Константин Борисович
  • Даринский Александр Николаевич
  • Науменко Наталья Федоровна
  • Чижиков Александр Ильич
  • Гуров Василий Викторович
RU2751445C1
Акустооптическое устройство 2D отклонения и сканирования неполяризованного лазерного излучения на одном кристалле 2020
  • Молчанов Владимир Яковлевич
  • Гуров Василий Викторович
  • Науменко Наталья Федоровна
  • Чижиков Александр Ильич
  • Юшков Константин Борисович
RU2755255C1
Лазерный источник с управляемой поляризацией излучения 2021
  • Молчанов Владимир Яковлевич
  • Науменко Наталья Федоровна
  • Чижиков Александр Ильич
  • Юшков Константин Борисович
  • Захаров Никита Геннадьевич
RU2778035C1
Акустооптический сдвигатель частоты лазерного излучения (варианты) 2022
  • Мазур Михаил Михайлович
  • Мазур Любовь Ивановна
  • Шорин Владимир Николаевич
  • Апрелев Алексей Викторович
RU2786036C1
ФАЗОЧУВСТВИТЕЛЬНЫЙ СПОСОБ ЧАСТОТНОЙ СТАБИЛИЗАЦИИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ И АКУСТООПТИЧЕСКИЙ МОДУЛЯТОР ДЛЯ ОСУЩЕСТВЛЕНИЯ ФАЗОВОЙ МОДУЛЯЦИИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 2009
  • Барышев Вячеслав Николаевич
  • Епихин Вячеслав Михайлович
RU2445663C2
ДВУХКРИСТАЛЬНЫЙ АКУСТООПТИЧЕСКИЙ СДВИГАТЕЛЬ ЧАСТОТЫ 2017
  • Мазур Михаил Михайлович
  • Мазур Любовь Ивановна
  • Шорин Владимир Николаевич
RU2648567C1
АКУСТООПТИЧЕСКИЙ ДЕФЛЕКТОР 2005
  • Роздобудько Виктор Власович
  • Пивоваров Иван Иванович
  • Пелипенко Михаил Иванович
RU2284559C1
УСТРОЙСТВО ДЛЯ МНОГОКАНАЛЬНОЙ ОПТИЧЕСКОЙ ЗАПИСИ ИНФОРМАЦИИ 1991
  • Полещук А.Г.
RU2017236C1

Иллюстрации к изобретению RU 2 476 916 C1

Реферат патента 2013 года АКУСТООПТИЧЕСКИЙ МОДУЛЯТОР

Изобретение относится к акустооптике и лазерной технике, в частности к акустооптическому модулятору пучка оптического излучения. Модулятор содержит кристаллический светозвукопровод с размещенным на его грани ультразвуковым излучателем и двумя боковыми гранями оптического качества для ввода и вывода указанного оптического излучения. Светозвукопровод выполнен из моноклинного кристалла со структурой KR(WO4)2, где R - редкоземельный элемент. При этом ультразвуковой излучатель размещен на грани кристалла, перпендикулярной оси Ng эллипсоида коэффициентов преломления кристалла. Модулятор можно использовать для лазерных пучков высокой мощности с достижением высокого коэффициента дифракции. 2 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 476 916 C1

1. Акустооптический модулятор пучка оптического излучения, содержащий кристаллический светозвукопровод с размещенным на его грани ультразвуковым излучателем и двумя боковыми гранями оптического качества для ввода и вывода указанного оптического излучения, отличающийся тем, что светозвукопровод выполнен из моноклинного кристалла со структурой KR(WO4)2, где R - редкоземельный элемент, и при этом ультразвуковой излучатель размещен на грани кристалла перпендикулярной оси Ng эллипсоида коэффициентов преломления кристалла.

2. Акустооптический модулятор по п.1, отличающийся тем, что светозвукопровод выполнен из одного из следующих кристаллов: калий-иттриевого вольфрамата, или калий-гадолиниевого вольфрамата, или калий-иттербиевого вольфрамата, или калий-лютециевого вольфрамата.

3. Акустооптический модулятор по п.1, отличающийся тем, что ультразвуковой излучатель выполнен для продольных акустических волн, а входная оптическая грань светозвукопровода перпендикулярна оси Np или оси Nm эллипсоида коэффициентов преломления.

Документы, цитированные в отчете о поиске Патент 2013 года RU2476916C1

US 4759613 A, 26.07.1988
Устройство для автоматической регулировки силы приема 1937
  • Долуханов М.П.
SU53370A1
SU 1491210, 10.11.1999
Форсунка для сжигания мазута в мартеновских печах 1949
  • Жиляков И.Г.
  • Ломакин А.В.
SU88823A1

RU 2 476 916 C1

Авторы

Мазур Михаил Михайлович

Пожар Витольд Эдуардович

Павлюк Анатолий Алексеевич

Пустовойт Владислав Иванович

Мазур Любовь Ивановна

Шорин Владимир Николаевич

Даты

2013-02-27Публикация

2011-11-30Подача