СВЕТОСИЛЬНЫЙ ОБЪЕКТИВ С УГЛОВЫМ ПОЛЕМ НЕ МЕНЕЕ 25 ГРАДУСОВ ДЛЯ ТЕПЛОВИЗОРА (ВАРИАНТЫ) Российский патент 2013 года по МПК G02B9/38 G02B11/22 G02B13/14 

Описание патента на изобретение RU2477502C1

Изобретение относится к области оптического приборостроения, а именно к объективам для инфракрасной (ИК) области спектра, и может быть использовано в тепловизорах, построенных на основе матричных фотоприемных устройств (МФПУ), не требующих охлаждения до криогенных температур, чувствительных в спектральном диапазоне от 8 до 12 мкм.

Для создания малогабаритных тепловизоров, построенных на основе МФПУ, не требующих охлаждения до криогенных температур (неохлаждаемых), чувствительных в спектральном диапазоне от 8 до 12 мкм, в связи с увеличением формата МФПУ и уменьшением шага между пикселями возрастает необходимость в создании светосильных инфракрасных объективов с угловыми полями не менее 25°, обеспечивающих высокие значения концентрации энергии в пределах площадок, размеры которых соответствуют размерам пикселей МФПУ, имеющих величину 0,025 мм и менее.

Задачей, на решение которой направлено заявляемая группа устройств, объединенных единым изобретательским замыслом, (варианты) является создание малогабаритной технологичной, экономически эффективной конструкции оптической системы светосильного объектива с угловым полем не менее 25 градусов для тепловизора с высокими техническими и эксплуатационными характеристиками, обеспечивающей возможность сопряжения с современными матричными приемниками ИК излучения в диапазоне 8-12 мкм.

Известен объектив для тепловизора, состоящий из четырех одиночных линз [Патент RU 2386155, 2010]. Объектив имеет фокусное расстояние 130 мм, относительное отверстие 1; 1,4, угловое поле в пространстве предметов 9°.

Недостатком аналога являются низкое относительное отверстие, малое угловое поле, наличие виньетирования наклонных пучков.

Известен светосильный объектив для тепловизора [патент RU 2365952, 2009], содержащий четыре компонента. Объектив имеет фокусное расстояние 100 мм, относительное отверстие 1:1, угловое поле 9,6°×7,2° (12° по диагонали), спектральный диапазон 8-12 мкм.

Недостатком аналога является недостаточная величина углового поля.

Указанные недостатки аналогов не позволяют их использовать в тепловизорах с угловыми полями не менее 25 градусов, построенных на основе неохлаждаемых МФПУ с размерами пикселей 0,025 мм и менее.

Наиболее близким аналогом к заявляемому устройству (первый вариант) по технической сущности является светосильный объектив с угловым полем 25 градусов для тепловизора [Патент RU 2403598, 2010], состоящий из оптически связанных, расположенных по ходу лучей четырех линз, первая из которых - положительный мениск, обращенный вогнутой поверхностью к плоскости изображений, вторая - отрицательная линза, третья - мениск, обращенный выпуклой поверхностью к плоскости изображений, четвертая - положительный мениск, обращенный вогнутой поверхностью к плоскости изображений. Вторая линза выполнена двояковогнутой. Суммарная оптическая сила всех линз не превышает 0,15 оптической силы всего объектива, а сумма оптических сил первых двух линз отрицательна и составляет по абсолютной величине не менее 0,8 оптической силы всего объектива. Все преломляющие поверхности объектива являются сферическими. Объектив имеет угловое поле 2ω=25°, фокусное расстояние f'=38 мм, относительное отверстие 1:1, спектральный диапазон работы от 8 до 9 мкм. Линейный размер изображения 2y (диагональ чувствительной площадки МФПУ) составляет 2y=2f'·tgω=2·38·tg12,5=16,8 мм. Длина объектива от первой поверхности до плоскости изображения составляет 122 мм. Наибольший диаметр линз объектива равен 97,57 мм. Масса объектива, рассчитанная для входящих в него линз, диаметры которых соответствуют световым диаметрам (т.е. без учета припусков на крепление линз в оправах), составляет 208 г. Коэффициент передачи контраста на частоте 25 лин/мм составляет для точки на оси 0,65, для точек по полю - 0,5.

Недостатками наиболее близкого аналога являются: ограниченный спектральный диапазон работы от 8 до 9 мкм; большая длина по оси, превышающая фокусное расстояние объектива более чем в 3 раза; большие диаметры линз, превышающие диаметр входного зрачка более чем в 2,5 раза и размер изображения - более чем в 4 раза, приводящие к большой массе оптических деталей; а также большая величина изменения фокусного расстояния при изменении температуры эксплуатации.

Ограничение спектрального диапазона работы объектива вызвано тем, что объектив не может работать в спектральном диапазоне с длинами волн более 9 мкм из-за поглощения излучения в линзах из кремния.

Большая длина по оси, превышающая фокусное расстояние объектива более чем в 3 раза, обусловлена тем, что суммарная оптическая сила всех линз не превышает 0,15 оптической силы всего объектива, а сумма оптических сил первых двух линз отрицательна и составляет по абсолютной величине не менее 0,8 оптической силы всего объектива. При таком соотношении оптических сил обеспечить требуемую оптическую силу объектива можно, только включив в качестве действенного оптического параметра расстояние между компонентами, которое должно быть в этом случае сопоставимым по величине с фокусным расстоянием объектива. Это утверждение следует из анализа известной формулы для эквивалентной оптической силы системы из двух компонентов (первый компонент - первая и вторая линза, второй компонент - третья и четвертая линзы объектива-аналога).

Выполнение первых двух линз таким образом, что их оптическая сила является отрицательной, соответствует схеме «инвертированного телеобъектива», а указанное в объективе-аналоге соотношение между оптическими силами (сумма оптических сил первых двух линз отрицательна и составляет по абсолютной величине не менее 0,8 оптической силы всего объектива, а суммарная оптическая сила всех линз не превышает 0,15 оптической силы всего объектива) приводит к тому, что диаметры третьей и четвертой линз превышают диаметр входного зрачка. Следствием этого является большая масса оптических деталей объектива.

Несмотря на то, что температурный коэффициент линейного расширения (ТКЛР) кремния меньше, чем, например, германия и селенида цинка, но наличие большого расстояния по оси между второй и третьей линзой (большая длина корпуса объектива), приводит к тому, что при заявленных соотношениях между оптическими силами линз величина терморасфокусировки возрастает. Так, проверочный расчет по конструктивным параметрам наиболее близкого аналога показал, что термооптическая аберрация положения при температуре -50°C составляет примерно 1,3% от величины фокусного расстояния объектива, а относительное изменение величины фокусного расстояния - 0,86%.

Таким образом, достичь расширения спектрального диапазона работы, уменьшения длины объектива по оси, уменьшения световых диаметров линз объектива и, как результат, снижения массы, а также повышения термостабильности фокусного расстояния в наиболее близком аналоге не возможно без существенного изменения устройства оптической системы объектива, изменения соотношения между оптическими силами входящих в него линз и использования других материалов для линз объектива.

Технический результат, достигаемый при решении поставленной задачи, заключается в расширении спектрального диапазона работы, в уменьшении диаметров линз, в уменьшении длины по оси, в уменьшении массы оптических деталей, а также в повышении термостабильности фокусного расстояния при одновременном сохранении величины относительного отверстия 1:1, углового поля не менее 25 градусов и высокой концентрации энергии в пятне рассеяния, соответствующему размеру пикселя МФПУ.

Поставленная задача решается, а технический результат достигается тем, что в отличие от наиболее близкого аналога вторая линза выполнена в виде мениска, обращенного вогнутостью к плоскости изображений, третий мениск выполнен отрицательным; оптические силы второго и третьего менисков по абсолютной величине не превышают 0,3 от оптической силы всего объектива, сумма оптических сил всех линз превышает не менее чем в 1,5 раза оптическую силу объектива, при этом первый и четвертый мениски выполнены из германия, а второй и третий - из материалов с показателем преломления не ниже 2,2, пропускающих ИК излучение в диапазоне длин волн от 8 до 12 мкм. В конкретных примерах исполнения в качестве материалов второго и третьего менисков использован селенид цинка либо селенид цинка и арсенид галлия.

Выполнение второй линзы в виде мениска, обращенного вогнутостью к плоскости изображений, а третьего мениска отрицательным, причем оптические силы второго и третьего менисков по абсолютной величине не превышают 0,3 от оптической силы всего объектива, позволяет уменьшить длину объектива по оси и диаметры линз и, как результат, уменьшить массу оптических деталей.

Выполнение линз в объективе таким образом, что сумма оптических сил всех линз не менее чем в 1,5 раза превышает оптическую силу объектива, позволяет уменьшить длину объектива по оси и способствует повышению термостабильности фокусного расстояния.

Выполнение первого и четвертого мениски из германия, а второго и третьего - из материалов с показателем преломления не ниже 2,2, пропускающих ИК излучение в диапазоне длин волн от 8 до 12 мкм, обеспечивает расширение спектрального диапазона работы, способствует уменьшению хроматических аберраций и в совокупности с указанным распределением оптических сил в объективе обеспечивает возможность получения высокой концентрации энергии в пятне рассеяния, размер которого соответствует пикселям от 0,025 мм до 0,017 мм в зависимости от типа МФПУ, во всем спектральном диапазоне.

Выполнение оптических сил второго и третьего менисков по абсолютной величине не более 0,3 от оптической силы всего объектива, суммарной оптической силы всех линз не менее чем в 1,5 раза больше, чем оптическая сила объектива, выполнение первого и четвертого менисков из германия, а второго и третьего - из материалов с показателем преломления не ниже 2,2, пропускающих ИК излучение в диапазоне длин волн от 8 до 12 мкм, позволяют в совокупности сохранить величину относительного отверстия до 1:1 и углового поля не менее 25 градусов, при этом достигается такое отношение длины объектива (т.е. расстояние по оси между первой поверхностью объектива и плоскостью изображения) к фокусному расстоянию объектива, которое близко по величине к сумме относительных оптических сил линз объектива, а наибольший диаметр линз практически не превышает диаметр входного зрачка.

Известен светосильный объектив с угловым полем не менее 25 градусов для тепловизора, состоящий из четырех линз, выполненных в виде менисков, первый из которых является положительным и обращен вогнутой поверхностью к плоскости изображений, второй - отрицательным и обращен вогнутой поверхностью к пространству предметов, третий - положительным; четвертый выполнен положительным и обращен вогнутой поверхностью к плоскости изображений, при этом первый, второй и четвертый мениски выполнены из материала с показателем преломления 4,0, а третий - из материала с показателем преломления не выше 3,4 [Патент RU 2050566, 1995]. Объектив имеет угловое поле 32°46', относительное отверстие 1:1, спектральный диапазон работы 3-5 мкм (основная длина волны 3,8 мкм), фокусное расстояние 50 мм. В каталоге [Оптические системы для инфракрасной области спектра: Каталог Государственного института прикладной оптики, объектив №158, с.32] приведена характеристика качества изображения указанного объектива: размер фигуры рассеяния для основной длины волны на оси составляет 0,072 мм, на краю - 0,90 мм. Также в каталоге указано, что материалом первого мениска является кремний.

Недостатком объектива является ограничение пропускания длинноволнового ИК излучения длиной волны около 9 мкм, обусловленное использованными в нем материалами линз, а также большие размеры пятен рассеяния в пределах поля, не соответствующие размерам пикселей МФПУ 0,025 мм и менее, что не позволяет его использовать с современными с неохлаждаемыми МФПУ рабочего спектрального диапазона 8-12 мкм.

Указанный аналог принят за наиболее близкий для устройства объектива по второму варианту.

Технический результат, достигаемый при решении поставленной задачи, заключается в расширении спектрального диапазона работы, в достижении высокой концентрации энергии в пятне рассеяния, соответствующем размеру пикселя МФПУ, при одновременном сохранении величины относительного отверстия 1:1, углового поля не менее 25 градусов.

Поставленная задача решается, а технический результат достигается тем, что в отличие от наиболее близкого аналога третий мениск выполнен отрицательным и обращен вогнутой поверхностью к плоскости изображений, материал первого мениска имеет показатель преломления 4,0, показатель преломления материала третьего мениска не превышает 2,5, при этом относительные оптические силы менисков составляют соответственно (0,65÷0,75), - (0,01÷0,05), - (0,15÷0,25), (1,0÷1,3). В частном случае исполнения в качестве материала третьего мениска использован селенид цинка.

Указанные совокупности признаков в каждом из вариантов позволяют создать малогабаритную технологичную, экономически эффективную конструкцию оптической системы светосильного объектива с угловым полем не менее 25 градусов для тепловизора с высокими техническими и эксплуатационными характеристиками, обеспечивающей возможность сопряжения с современными матричными приемниками ИК излучения в диапазоне 8-12 мкм.

Предлагаемое решение (варианты), на наш взгляд, обладает новизной и изобретательским уровнем. Авторам не известны светосильные объективы с угловым полем не менее 25 градусов для тепловизоров, в которых были бы реализованы совокупности указанных признаков, соответствующие предлагаемым вариантам.

Предложенное решение иллюстрируется следующими графическими материалами:

фиг.1 - оптическая схема светосильного объектива с угловым полем не менее 25 градусов для тепловизора с ходом осевого и наклонных пучков лучей (первый вариант);

фиг.2а - график продольной хроматической аберрации для примера №1;

фиг.2б - графики продольной хроматической аберрации примера №2;

фиг.2в - графики продольной хроматической аберрации для примера №3;

фиг.3а - частотно-контрастная характеристика (ЧКХ) для примера №1;

фиг.3б - ЧКХ для примера №2;

фиг.3в - ЧКХ для примера №3;

фиг.4а - функция концентрации энергии (ФКЭ) в пятне для примера №1;

фиг.4б - ФКЭ для примера №2;

фиг.4в - ФКЭ для примера №3;

фиг.4г - ФКЭ для примера №3 при температуре -50°C;

фиг.5а - дисторсия для примера №1;

фиг.5б - дисторсия для примера №2;

фиг.5в - дисторсия для примера №3,

при этом номера примеров конкретных исполнений указаны в соответствии с ниже приведенной таблицей 1;

фиг.6 - оптическая схема светосильного объектива с угловым полем не менее 25 градусов для тепловизора с ходом осевого и наклонных пучков лучей (второй вариант);

фиг.7 - график продольной хроматической аберрации;

фиг.8 - график ЧКХ;

фиг.9 - график ФКЭ;

фиг.10 - график дисторсии,

при этом фиг.6-10 соответствуют второму варианту.

Светосильный объектив с угловым полем не менее 25 градусов для тепловизора (первый вариант) (фиг.1) содержит оптически связанные, расположенные по ходу лучей четыре линзы 1-4, первая из которых - положительный мениск 1, обращенный вогнутой поверхностью к плоскости изображений, вторая - отрицательный мениск 2, обращенный вогнутостью к плоскости изображений, третья - отрицательный мениск 3, обращенный выпуклой поверхностью к плоскости изображений, четвертая - положительный мениск 4, обращенный вогнутой поверхностью к плоскости изображений. Оптические силы менисков 2 и 3 по абсолютной величине не превышают 0,3 от оптической силы всего объектива, сумма относительных оптических сил всех линз превышает не менее чем в 1,5 раза оптическую силу объектива, при этом мениски 1 и 4 выполнены из германия, а мениски 2 и 3 - из материалов с показателем преломления не ниже 2,2, пропускающих инфракрасное излучение в диапазоне длин волн от 8 до 12 мкм. В качестве материалов для менисков 2 и 3 использован селенид цинка либо селенид цинка и арсенид галлия. Поз. 5 дополнительно показано защитное окно приемника излучения в виде плоскопараллельной пластинки.

Светосильный объектив с угловым полем не менее 25 градусов для тепловизора (второй вариант) (фиг.6) содержит оптически связанные, расположенные по ходу лучей четыре линзы 1-4, выполненные в виде менисков. Первый мениск 1 является положительным и обращен вогнутой поверхностью к плоскости изображений. Второй мениск 2 является отрицательным и обращен вогнутой поверхностью к пространству предметов. Третий мениск 3 выполнен отрицательным и обращен вогнутой поверхностью к плоскости изображений. Четвертый мениск 4 выполнен положительным и обращен вогнутой поверхностью к плоскости изображений. Мениски 1, 2, 4 выполнены из материала с показателем преломления 4,0, показатель преломления материала мениска 3 не превышает 2,5. Относительные оптические силы менисков 1-4 составляют соответственно (0,65÷0,75), - (0,01÷0,05), - (0,15÷0,25), (1,0÷1,3). В частном случае исполнения в качестве материала мениска 3 использован селенид цинка. Поз. 5 дополнительно показано защитное окно приемника излучения в виде плоскопараллельной пластинки.

Светосильный объектив с угловым полем не менее 25 градусов для тепловизора по любому из вариантов работает следующим образом. Мениски 1-4 фокусируют инфракрасное излучение, идущее от каждой точки удаленных объектов в пределах углового поля, определяемого размерами чувствительной площадки МФПУ (на фиг.1 и 6 не показано) и фокусным расстоянием объектива, и создают действительное изображение объектов в плоскости изображений, с которой совмещается плоскость чувствительных элементов МФПУ, закрытых защитным окном 5. Мениски 1-4 обеспечивают для каждой точки объекта фокусировку в пятно малого размера, сопоставимое по величине с пятном рассеяния, обусловленным дифракцией. Диаметры менисков таковы, что обеспечивается относительное отверстие не менее 1:1, отсутствие виньетирования наклонных пучков лучей в пределах всего поля, а также ход главных лучей в пространстве изображений, близкий к телецентрическому. Телецентрический ход является необходимым для современных МФПУ, так как обеспечивает одинаковые условия облученности для всех пикселей МФПУ.

Реализация светосильного объектива с угловым полем не менее 25 градусов для тепловизора по первому варианту подтверждается тремя примерами конкретного исполнения, приведенными в таблице 1, с фокусными расстояниями 20, 30 и 36 мм для применения в спектральном диапазоне от 8 до 12 мкм совместно с неохлаждаемыми матричными приемниками излучения форматов 384×288 (шаг 0,025 мм); 640×480 (шаг 0,017 мм) и 640×480 (шаг 0,020 мм) соответственно. Объективы в примерах №1-3 конкретного исполнения имеют угловые поля 33,6; 25,5 и 25 градусов.

Для всех примеров конкретного исполнения приведены параметры оптической схемы: оптические силы, диаметры и материалы линз. Величины f' и размера изображения 2y приведены в миллиметрах, значения остальных параметров приведены при нормировке эквивалентного фокусного расстояния объективов f'н=1. Кроме того, в таблице 1 приведены формат и размер (шаг) пикселя МФПУ, для которого предназначен пример исполнения; значения ФКЭ в соответствующем размере пикселя МФПУ на оси объектива и по полю, а также наибольшая величина дисторсии для углового поля 2ω.

Таблица 1 Параметры примеров конкретного исполнения (первый вариант) Параметр Номер примера конкретного исполнения 1 2 3 f', мм 20 30 36 D:f' 1:1,05 1:1,00 1:1,00 2ω, град 33,6 25,5 25 2y, мм 12 13,6 16 Δλ, мкм 8-12 8-12 8-12 Поз.1 и 4 Ge Ge Ge Поз.2, 3 ZnSe ZnSe ZnSe, GaAs Масса, г 18,4 43,5 83 Длина, мм 34,6 50,0 63,4 Формат МФПУ 384×288 640×480 640×480 Размер пикселя, мм 0,025 0,017 0,020 ФКЭ на оси 0,84 0,75 0,80 ФКЭ по полю 0,80 0,71 0,75 Дисторсия, % 0,5 0,13 0,11 |f'н| 1 1 1 2y, отн.ед. 0,61 0,46 0,44 D1 0,95 1,00 1,00 φ1 0,64 0,66 0,68 D2 0,90 0,88 0,88 φ2 -0,19 -0,24 -0,28 D3 0,86 0,83 0,84 φ3 -0,15 -0,18 -0,22 D4 0,97 0,93 1,0 φ4 1,30 1,44 1,52 φ23 1,27 1,33 1,25 φ1234 1,60 1,68 1,70 L/f' 1,74 1,67 1,75

В таблице 1 приняты следующие обозначения: φi - относительная оптическая сила i-го мениска в соответствии с позицией на фиг.1; Di - диаметр i-го мениска в соответствии с позицией на фиг.1; L - расстояние от первой поверхности мениска поз.1 до плоскости изображений объектива.

Как следует из таблицы 1 и фиг.1, знаки оптических сил и форма менисков соответствуют заявляемым в первом варианте объектива. Мениски 1 и 4 во всех примерах реализации выполнены из германия (показатель преломления 4,0). Мениски 2 и 3 в примерах 1 и 2 выполнены из ZnSe (показатель преломления 2,4); в примере 3 - из ZnSe и GaAs (показатель преломления 3,3), при этом материалы менисков 2 и 3 имеют показатель преломления не ниже 2,2. Все использованные материалы пропускают инфракрасное излучение в диапазоне длин волн от 8 до 12 мкм. Все линзы примеров конкретных исполнений имеют сферические преломляющие поверхности.

Спектральный диапазон работы увеличен по сравнению с наиболее близким аналогом с 8-9 мкм до 8-12 мкм, что соответствует четырехкратному увеличению. Световые диаметры всех линз, входящих в объектив, не превышают диаметр входного зрачка. Наиболее превышение длины объектива по оси в сравнении с его фокусным расстоянием составляет 1,75, что меньше, чем в объективе-аналоге в 1,9 раза. Уменьшение габаритных размеров линз объектива привело к уменьшению массы: примеры исполнения, приведенные в таблице 1 имеют массу: 18,4; 43,5 и 83 г. Исполнение по примеру №3, угловое поле и формат изображения которого соответствуют наиболее близкому аналогу, имеет массу в 2,5 раза меньше, чем аналог.

При этом все примеры из таблицы 1 имеют высокие значения ФКЭ для размеров пикселей, применяемых МФПУ, и малые значения дисторсии, удовлетворяющие требованиям к качеству изображения объективов тепловизионных приборов.

Для подтверждения высокого качества изображения предлагаемого варианта для трех примеров конкретного исполнения, представленных в таблице 1, далее приводятся характеристики, наиболее часто используемые для оценки качества изображения в оптических системах аналогичного назначения.

На фиг.2а, 2б и 2в приведены графики продольной хроматической аберрации, из которых следует, что в указанных примерах достигается высокая степень коррекции хроматической аберрации: например, в примере №3 остаточный продольный хроматизм не превышает 0,007 мм, что составляет менее 1/5000 от величины фокусного расстояния объектива.

Графики ЧКХ для тех же примеров представлены на фиг.3а, 3б, 3в, графики ФКЭ - соответственно на фиг.4а, 4б, 4в, графики дисторсии - соответственно на фиг.5а, 5б, 5в. Из представленных графиков следует, что заявляемый объектив обеспечивает высокое качество изображения для каждого из примеров конкретного исполнения, близкое к дифракционному. Так, для примера №3 для пространственной частоты 25 лин/мм в плоскости изображений коэффициент передачи контраста для всех точек в пределах поля не выходит за пределы от 0,66 до 0,5. ФКЭ для этого же примера для пикселя размером 0,02 мм для всех точек в пределах поля имеет величины от 0,75 до 0,8. Величина дисторсии для примера №3 не превышает 0,1% для всех точек поля.

Для удобства сравнения с наиболее близким аналогом проведен расчет термооптических аберраций объектива примера №3, рассчитанного на тот же формат и размер пикселя МФПУ, что и наиболее близкий аналог. То обстоятельство, что в примере №3 фокусное расстояние несколько отличается от величины фокусного расстояния в наиболее близком аналоге, объясняется меньшей величиной дисторсии в примере №3, при одинаковых величинах изображения. Расчет проводился для диапазона температур эксплуатации от -50 до +50°C. Наибольшая величина термооптической аберрации (при -50°C) составляет 0,336 мм, т.е. 0,93% от фокусного расстояния. Изменение фокусного расстояния составляет 0,09% от величины фокусного расстояния, что на порядок меньше, чем в наиболее близком аналоге, и позволяет говорить о термостабильности фокусного расстояния объектива в указанном температурном диапазоне эксплуатации. ФКЭ с учетом термокомпенсационной подвижки представлена на фиг.4г для температуры -50°C и подтверждает сохранение высокого качества изображения в температурном диапазоне.

Таким образом, в примерах конкретного исполнения по первому варианту светосильного объектива с угловым полем не менее 25 градусов для тепловизора достигаемый технический результат по сравнению с наиболее близким аналогом заключается в расширении спектрального диапазона работы в 4 раза, в уменьшении диаметров линз до диаметра входного зрачка, в уменьшении длины по оси в 1,9 раза, в уменьшении массы оптических деталей, в повышении термостабильности фокусного расстояния, в обеспечении в пределах всего поля высокой концентрации энергии в пятне рассеяния размером до 0,015 мм при одновременном сохранении величины относительного отверстия 1:1 и углового поля не менее 25 градусов.

Реализация второго варианта светосильного объектива с угловым полем не менее 25 градусов для тепловизора иллюстрируется конкретным примером исполнения, параметры которого приведены в таблице 2. Обозначения в таблице 2 аналогичны таблице 1. Объектив имеет фокусное расстояние 24 мм, угловое поле 28 градусов. Рассчитан для использования с МФПУ формата 384×288, шаг 0,025 мм. Выбор величины относительного отверстия 1: 1,2 обусловлен требованиями технического задания для разработки конкретного малогабаритного тепловизора.

Оптические силы 1-4 линз объектива (см. фиг.6) равны соответственно: 0,69; -0,03; -0,22; 1,14, что обосновывает заявленный диапазон изменения оптических сил линз в объективе по второму варианту.

Показатель преломления материала линз 1, 2 и 4 составляет 4,0 (германий); линзы 3-2,4 (селенид цинка), при этом последний не превышает 2,5.

Конкретные значения конструктивных параметров обеспечиваются стандартной оптимизацией, входящей в состав любой современной оптической программы по расчету оптических систем, при использовании указанных оптических сил и материалов.

Таблица 2 Параметры примера конкретного исполнения (второй вариант) Параметр Значение f', мм 24 D:f' 1:1,2 2ω, град 28 2y, мм 12 Δλ, мкм 8-12 Поз.1, 2, 4 Ge Поз.3 ZnSe Масса, г 26,6 Длина, мм 41 Формат МФПУ 384×288 Размер пикселя, мм 0,025 ФКЭ на оси 0,84 ФКЭ по полю 0,82 Дисторсия, % 0,1 |f'н| 1 2y, отн. ед. 0,51 D1 1,0 φ1 0,69 D2 1,0 φ2 -0,03 D3 1,0 φ3 -0,22 D4 0,93 φ4 1,14 φ1234 1,58 L/f' 1,71

Для подтверждения высокого качества изображения предлагаемого варианта на фиг.7 приведен графики продольной хроматической аберрации, из которого следует, что остаточный продольный хроматизм не превышает 0,0045 мм, что составляет менее 1/5000 от величины фокусного расстояния объектива.

Графики ЧКХ представлены на фиг.8, графики ФКЭ - на фиг.9, графики дисторсии - на фиг.10.

Из представленных графиков следует, что заявляемый объектив (второй вариант) также обеспечивает высокое качество изображения, близкое к дифракционному. Так, для пространственной частоты 20 лин/мм в плоскости изображений коэффициент передачи контраста для всех точек в пределах поля имеет величины от 0,67 до 0,6.

ФКЭ для пикселя размером 0,025 мм для всех точек в пределах поля имеет величины от 0,87 до 0,82. Величина дисторсии не превышает 0,1% для всех точек поля и является приемлемой для тепловизионных приборов.

Таким образом, по сравнению с наиболее близким аналогом объектив по второму варианту обеспечивает спектральный диапазон работы от 8 до 12 мкм, малые размеры аберрационных пятен рассеяния, подтверждением чему являются ЧКХ и ФКЭ (фиг.8, 9), близкие к дифракционному ограничению, что позволяет его использовать с современными с неохлаждаемыми МФПУ рабочего спектрального диапазона 8-12 мкм

Анализ качества изображения подтверждает высокое качество изображения, близкое к дифракционному, и приемлемую для тепловизионных приборов величину дисторсии.

Таким образом, реализация технических преимуществ предлагаемых вариантов светосильного объектива позволяет создать малогабаритную технологичную, экономически эффективную конструкцию оптической системы светосильного объектива с угловым полем не менее 25 градусов для тепловизора с высокими техническими и эксплуатационными характеристиками, на основе современных неохлаждаемых матричных приемников ИК излучения в диапазоне 8-12 мкм.

Литература

1. Патент RU 2386155, 2010.

2. Патент RU 2365952, 2009.

3. Патент RU 2403598, 2010.

4. Патент RU 2050566, 1995.

5. Оптические системы для инфракрасной области спектра: Каталог Государственного института прикладной оптики. - Казань: ГИПО, 1992.

Похожие патенты RU2477502C1

название год авторы номер документа
СВЕТОСИЛЬНЫЙ ОБЪЕКТИВ С ИЗМЕНЯЕМОЙ ВЕЛИЧИНОЙ ПОЛЯ ЗРЕНИЯ ДЛЯ ТЕПЛОВИЗОРА (ВАРИАНТЫ) 2013
  • Хацевич Татьяна Николаевна
  • Дружкин Евгений Витальевич
RU2538067C1
ОБЪЕКТИВ ДЛЯ ПРИБОРА НОЧНОГО ВИДЕНИЯ 2012
  • Хацевич Татьяна Николаевна
  • Дружкин Евгений Витальевич
RU2504808C1
ОБЪЕКТИВ ДЛЯ SWIR ДИАПАЗОНА СПЕКТРА 2018
  • Хацевич Татьяна Николаевна
  • Мордвин Николай Николаевич
  • Дружкин Евгений Витальевич
RU2675195C1
ИНФРАКРАСНЫЙ СВЕТОСИЛЬНЫЙ ТРЕХЛИНЗОВЫЙ ОБЪЕКТИВ 2007
  • Хацевич Татьяна Николаевна
  • Журавлев Петр Васильевич
RU2348953C1
ДВУХСПЕКТРАЛЬНЫЙ ИНФРАКРАСНЫЙ ОБЪЕКТИВ С ВЫНЕСЕННОЙ В ПРОСТРАНСТВО ИЗОБРАЖЕНИЙ АПЕРТУРНОЙ ДИАФРАГМОЙ 2010
  • Хацевич Татьяна Николаевна
  • Терешин Евгений Александрович
RU2410733C1
ОПТИЧЕСКАЯ СИСТЕМА С ВЫНЕСЕННОЙ АПЕРТУРНОЙ ДИАФРАГМОЙ ДЛЯ СРЕДНЕГО ИК ДИАПАЗОНА СПЕКТРА 2009
  • Хацевич Татьяна Николаевна
  • Терешин Евгений Александрович
RU2419113C1
ОКУЛЯР С УДАЛЕННЫМ ЗРАЧКОМ 2012
  • Хацевич Татьяна Николаевна
  • Дружкин Евгений Витальевич
RU2498364C1
ДВУХДИАПАЗОННЫЙ ИНФРАКРАСНЫЙ СВЕТОСИЛЬНЫЙ ОБЪЕКТИВ 2011
  • Хацевич Татьяна Николаевна
  • Парфёнова Татьяна Валентиновна
RU2475787C1
СПОСОБ ИЗМЕНЕНИЯ НАПРАВЛЕНИЯ ВИЗИРНОЙ ОСИ В ОПТИЧЕСКОМ ПРИЦЕЛЕ И ПРИЦЕЛ С ПЕРЕМЕННЫМ УВЕЛИЧЕНИЕМ, РЕАЛИЗУЮЩИЙ СПОСОБ 2012
  • Хацевич Татьяна Николаевна
  • Дружкин Евгений Витальевич
RU2501051C1
ДВУХДИАПАЗОННЫЙ ИНФРАКРАСНЫЙ ОБЪЕКТИВ 2012
  • Хацевич Татьяна Николаевна
  • Парфёнова Татьяна Валентиновна
RU2503047C1

Иллюстрации к изобретению RU 2 477 502 C1

Реферат патента 2013 года СВЕТОСИЛЬНЫЙ ОБЪЕКТИВ С УГЛОВЫМ ПОЛЕМ НЕ МЕНЕЕ 25 ГРАДУСОВ ДЛЯ ТЕПЛОВИЗОРА (ВАРИАНТЫ)

Объектив может быть использован в тепловизорах на основе неохлаждаемых матричных фотоприемных устройств в спектральном диапазоне от 8 до 12 мкм. Объектив содержит четыре мениска, первый - положительный мениск, обращенный вогнутой поверхностью к плоскости изображений, второй - отрицательный, третий - отрицательный, четвертый - положительный и обращен вогнутой поверхностью к плоскости изображений. Оптические силы менисков удовлетворяют соотношениям, указанным в формуле изобретения. В объективе по первому варианту второй мениск обращен вогнутой поверхностью к плоскости изображений, третий - выпуклой поверхностью к плоскости изображений. Первый и четвертый мениски выполнены из германия, второй и третий - из материалов с показателем преломления не ниже 2,2. В объективе по второму варианту второй мениск обращен вогнутой поверхностью к пространству предметов, третий - вогнутой поверхностью к плоскости изображений. Первый, второй и четвертый мениски выполнены из материала с показателем преломления 4,0. Показатель преломления материала третьего мениска не превышает 2,5. Технический результат - расширение спектрального диапазона работы, уменьшение диаметров линз, длины по оси и массы, повышение термостабильности фокусного расстояния при сохранении величины относительного отверстия 1:1 и углового поля не менее 25 градусов, обеспечение в пределах всего поля высокой концентрации энергии в пятне рассеяния размером 0,025 мм и менее. 2 н. и 2 з.п. ф-лы, 19 ил., 2 табл.

Формула изобретения RU 2 477 502 C1

1. Светосильный объектив с угловым полем не менее 25° для тепловизора, состоящий из оптически связанных, расположенных по ходу лучей четырех линз, первая из которых - положительный мениск, обращенный вогнутой поверхностью к плоскости изображений, вторая - отрицательная, третья - мениск, обращенный выпуклой поверхностью к плоскости изображений, четвертая - положительный мениск, обращенный вогнутой поверхностью к плоскости изображений, отличающийся тем, что вторая линза выполнена в виде мениска, обращенного вогнутой поверхностью к плоскости изображений, третий мениск выполнен отрицательным, оптические силы второго и третьего менисков по абсолютной величине не превышают 0,3 от оптической силы всего объектива, сумма относительных оптических сил всех линз превышает не менее, чем в 1,5 раза оптическую силу объектива, при этом первый и четвертый мениски выполнены из германия, а второй и третий - из материалов с показателем преломления не ниже 2,2, пропускающих инфракрасное излучение в диапазоне длин волн от 8 до 12 мкм.

2. Объектив по п.1, отличающийся тем, что в качестве материалов для второго и третьего менисков использован селенид цинка либо селенид цинка и арсенид галлия.

3. Светосильный объектив с угловым полем не менее 25° для тепловизора, состоящий из оптически связанных, расположенных по ходу лучей четырех линз, выполненных в виде менисков, первый из которых является положительным и обращен вогнутой поверхностью к плоскости изображений, второй - отрицательным и обращен вогнутой поверхностью к пространству предметов, четвертый выполнен положительным и обращен вогнутой поверхностью к плоскости изображений, при этом второй и четвертый мениски выполнены из материала с показателем преломления 4,0, отличающийся тем, что третий мениск выполнен отрицательным и обращен вогнутой поверхностью к плоскости изображений, материал первого мениска имеет показатель преломления 4,0, показатель преломления материала третьего мениска не превышает 2,5, при этом относительные оптические силы менисков составляют соответственно (0,65÷0,75), -(0,01÷0,05), -(0,15÷0,25), (1,0÷1,3).

4. Объектив по п.3, отличающийся тем, что в качестве материала третьего мениска использован селенид цинка.

Документы, цитированные в отчете о поиске Патент 2013 года RU2477502C1

СВЕТОСИЛЬНЫЙ ОБЪЕКТИВ ДЛЯ ТЕПЛОВИЗОРА 2009
  • Грамматин Александр Пантелеймонович
  • Чан Куок Туан
RU2403598C1
СВЕТОСИЛЬНЫЙ ОБЪЕКТИВ 2008
  • Щеглов Сергей Иванович
  • Зарубин Владимир Петрович
  • Зубок Светлана Николаевна
RU2386155C1
СВЕТОСИЛЬНЫЙ ОБЪЕКТИВ 2010
  • Медведев Александр Владимирович
  • Гринкевич Александр Васильевич
  • Мельникова Нина Николаевна
  • Князева Светлана Николаевна
RU2413261C1
ЛИНЗОВЫЙ ОБЪЕКТИВ ДЛЯ ИНФРАКРАСНОЙ ОБЛАСТИ СПЕКТРА 1992
  • Кельдиватов А.Ф.
  • Назмеев М.М.
  • Циглер Л.Д.
RU2050566C1
US 4030805 А, 21.06.1977
JP 2005062559 А, 10.03.2005
DE 3026282 С, 30.09.1982.

RU 2 477 502 C1

Авторы

Хацевич Татьяна Николаевна

Дружкин Евгений Витальевич

Даты

2013-03-10Публикация

2011-08-10Подача