Изобретение относится к теплоэнергетике, в частности к тепловым электростанциям промышленных предприятий, где применяются башенные или вентиляторные градирни.
Наиболее близкой по технической сущности и достигаемому результату к заявляемому объекту является тепловая электростанция, содержащая:
- энергетический котел, в который подводится питательная вода под большим давлением, топливо и атмосферный воздух для горения. В топке котла идет процесс горения - химическая энергия топлива превращается в тепловую и лучистую энергию. Питательная вода протекает по трубной системе, расположенной внутри котла. Сгорающее топливо является мощным источником теплоты, которая передается питательной воде. Последняя нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения. Этот пар с температурой 540°C и давлением 13-24 МПа по одному или нескольким трубопроводам подается в паровую турбину;
- турбоагрегат, состоящий из паровой турбины, электрогенератора и возбудителя. Паровая турбина, в которой пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного), преобразует потенциальную энергию сжатого и нагретого до высокой температуры пара в кинетическую энергию вращения ротора турбины. Турбина приводит электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток. Электрогенератор состоит из статора, в электрических обмотках которого генерируется ток, и ротора, представляющего собой вращающийся электромагнит, питание которого осуществляется от возбудителя;
- конденсатор служит для конденсации пара, поступающего из турбины, и создания глубокого разрежения. Это позволяет очень существенно сократить затрату энергии на последующее сжатие образовавшейся воды и одновременно увеличить работоспособность пара, т.е. получить большую мощность от пара, выработанного котлом;
- питательный насос для подачи питательной воды в котел и создания высокого давления перед турбиной (патент РФ N2306513, МПК F28C 1/00, прототип).
Недостатком известного устройства является сравнительно невысокая эффективность и недостаточно рациональное использование вторичных энергоресурсов, например в градирне, где охлаждение воды происходит с поверхности мелкофракционного капельного потока, и имеет место сравнительно малый диапазон гидравлических и тепловых нагрузок, при которых градирня может эффективно охлаждать циркуляционную воду.
Технически достижимый результат - повышение эффективности работы электростанции и рациональное использование вторичных энергоресурсов, а также улучшение условий труда обслуживающего персонала.
Это достигается тем, что в конденсационной паротурбинной электростанции с акустической кабиной оператора, содержащей котельную установку, производящую пар высоких параметров, паротурбинную установку, преобразующую теплоту пара в механическую энергию, и электрические устройства, обеспечивающие выработку электроэнергии потребителю, основным элементом котельной установки является газовый котел, газ для работы которого подается от газораспределительной станции к горелкам, расположенным в поде котла, а котел представляет собой П-образную конструкцию с газоходами прямоугольного сечения, причем левая часть является топкой, внутренняя часть которой свободна, и в которой происходит горение топлива, при этом к горелкам специальным дутьевым вентилятором непрерывно подается горячий воздух, нагреваемый в воздухоподогревателе, при этом часть дымовых газов, уходящих из котла, специальным вентилятором рециркуляции подается к основному воздуху и смешивается с ним, причем стены топки облицованы экранами, представляющими собой трубы, к которым подается питательная вода из экономайзера, а пространство за топкой котла заполнено трубами, внутри которых движется пар или вода, причем снаружи эти трубы омываются горячими дымовыми газами, постепенно остывающими при движении к дымовой трубе, при этом основной пароперегреватель состоит из потолочного 20, ширмового 21 и конвективного 22 элементов, а паровая турбина турбоагрегата состоит из нескольких отдельных турбин - цилиндров: цилиндра высокого давления, цилиндра среднего давления и одного или нескольких одинаковых цилиндров низкого давления, из которых пар поступает в конденсатор, представляющий собой теплообменник, по трубкам которого непрерывно протекает охлаждающая вода, подаваемая циркуляционным насосом из аванкамеры градирни, выполненной с системой оборотного водоснабжения, которая имеет раздельные гидравлические контуры приготовления и потребления воды для градирни и содержит два бака для сбора воды с системой подпитки воды, затрачиваемой на испарение, причем баки соединены между собой компенсационной трубой, обеспечивающей гидравлическую независимость контуров приготовления рабочей воды и ее потребления, при этом образующийся в конденсаторе конденсат конденсатным насосом подается через фильтр, гидроаккумулятор и группу регенеративных подогревателей низкого давления в деаэратор, из которого питательная вода питательным насосом, приводимым в действие электродвигателем или специальной паровой турбиной, подается в группу подогревателей высокого давления, а газообразные продукты сгорания топлива, отдав свою основную теплоту питательной воде, поступают на трубы экономайзера и в воздухоподогреватель, в которых они охлаждаются до температуры 140-160°C и направляются с помощью дымососа к дымовой трубе.
На фиг.1 представлена схема конденсационной паротурбинной электростанции (ТЭС), работающей на газе с акустической кабиной оператора, на фиг.2 изображен общий вид акустической кабины, на фиг.3 - общий вид акустической шумопоглощающей панели; на фиг.4 - общий вид акустической шумоотражающей светопрозрачной панели остекления кабины.
Основными узлами конденсационной паротурбинной электростанции (фиг.1) являются: котельная установка, производящая пар высоких параметров; турбинная или паротурбинная установка, преобразующая теплоту пара в механическую энергию вращения ротора турбоагрегата, и электрические устройства (электрогенератор, трансформатор и т.д.), обеспечивающие выработку электроэнергии потребителю, подаваемую посредством линий электропередач (ЛЭП).
Основным элементом котельной установки является газовый котел, газ для работы которого подается от газораспределительной станции 1, подключенной к магистральному газопроводу (на чертеже не показан). Давление газа в газораспределительной станции 1 снижается до нескольких атмосфер и газ подается к горелкам 2, расположенным в поде котла (в случае применения горелок подовых). Котел представляет собой, например, (как вариант) П-образную конструкцию с газоходами прямоугольного сечения, причем левая часть является топкой. Внутренняя часть топки свободна, и в ней происходит горение топлива, в рассматриваемом случае - газа. К горелкам 2 специальным дутьевым вентилятором 28 непрерывно подается горячий воздух, нагреваемый в воздухоподогревателе 25, например вращающимся воздухоподогревателе, теплоаккумулирующая набивка которого на первой половине оборота обогревается уходящими дымовыми газами, а на второй половине оборота - нагревает поступающий из атмосферы воздух. Для повышения температуры воздуха используется рециркуляция: часть дымовых газов, уходящих из котла, специальным вентилятором рециркуляции 29 подается к основному воздуху и смешивается с ним. Горячий воздух смешивается с газом и через горелки 2 котла подается в его топку - камеру, в которой происходит горение топлива. При горении образуется факел, представляющий собой мощный источник лучистой энергии. Таким образом, при горении топлива его химическая энергия превращается в тепловую и лучистую энергию факела.
Стены топки облицованы экранами 19, представляющими собой трубы, к которым подается питательная вода из экономайзера 24, при этом в экранах прямоточного котла питательная вода, проходя трубную систему котла только один раз, нагревается и испаряется, превращаясь в сухой насыщенный пар. В рассматриваемой схеме могут быть использованы также барабанные котлы, в экранах которых осуществляется многократная циркуляция питательной воды, а отделение пара от котловой воды происходит в барабане.
Пространство за топкой котла достаточно густо заполнено трубами, внутри которых движется пар или вода. Снаружи эти трубы омываются горячими дымовыми газами, постепенно остывающими при движении к дымовой трубе 26.
Сухой насыщенный пар поступает в основной пароперегреватель, состоящий из потолочного 20, ширмового 21 и конвективного 22 элементов. В основном пароперегревателе повышается его температура и, следовательно, потенциальная энергия. Полученный на выходе из конвективного пароперегревателя пар высоких параметров покидает котел и поступает по паропроводу к паровому турбоагрегату.
Мощная паровая турбина турбоагрегата состоит из нескольких отдельных турбин - цилиндров. К первому цилиндру - цилиндру высокого давления (ЦВД) 17 пар подводится прямо из котла, и поэтому он имеет высокие параметры (для турбин СКД - 23,5 МПа, 540°C, т.е. 240 ат/540°C). На выходе из ЦВД давление пара составляет 3÷3,5 МПа (30÷35 ат), а температура - 300÷340°C. Если бы пар продолжал расширяться в турбине дальше от этих параметров до давления в конденсаторе, то он стал бы настолько влажным, что длительная работа турбины была бы невозможной из-за эрозионного износа его деталей в последнем цилиндре. Поэтому из ЦВД относительно холодный пар возвращается обратно в котел в промежуточный пароперегреватель 23. В нем пар попадает снова под воздействие горячих газов котла, его температура повышается до исходной (540°C). Полученный пар направляется в цилиндр среднего давления (ЦСД) 16. После расширения в ЦСД до давления 0,2÷0,3 МПа (2÷3 ат) пар поступает в один или несколько одинаковых цилиндров низкого давления (ЦНД) 15.
Таким образом, расширяясь в турбине, пар вращает ее ротор, соединенный с ротором электрического генератора 14, в статорных обмотках 13 которого образуется электрический ток. Трансформатор повышает его напряжение для уменьшения потерь в линиях электропередачи, передает часть выработанной энергии на питание собственных нужд ТЭС, а остальную электроэнергию отпускает в энергосистему по ЛЭП.
И котел, и турбина могут работать только при очень высоком качестве питательной воды и пара, допускающем лишь ничтожные примеси других веществ. Кроме того, расходы пара огромны (например, в энергоблоке 1200 МВт за одну секунду испаряется, проходит через турбину и конденсируется более 1 т воды). Поэтому нормальная работа энергоблока возможна только при создании замкнутого цикла циркуляции рабочего тела высокой чистоты.
Пар, покидающий ЦНД турбины, поступает в конденсатор 12, представляющий собой теплообменник, по трубкам которого непрерывно протекает охлаждающая вода, подаваемая циркуляционным насосом 9 из аванкамеры 10 градирни 11 (а также возможна схема подачи из водохранилища или реки). Градирня 11 выполнена в виде железобетонной пустотелой вытяжной башни высотой до 150 м и выходным диаметром 40÷70 м, которая создает самотягу для воздуха, поступающего снизу через воздухо-направляющие щиты (на чертеже не показано). Внутри градирни 11 на высоте 10÷20 м устанавливают оросительное и разбрызгивающее устройства, при этом воздух, движущийся вверх, заставляет часть капель (примерно 1,5÷2%) испаряться, за счет чего охлаждается вода, поступающая из конденсатора 12 и нагретая в нем. Охлажденная вода собирается внизу в бассейне, и перетекает в аванкамеру 10, откуда циркуляционным насосом 9 она подается снова в конденсатор 12.
В рассматриваемой схеме применена система оборотного водоснабжения, которая имеет раздельные гидравлические контуры приготовления и потребления воды для градирни (возможен вариант с несколькими параллельно соединенными градирнями - на чертеже не показано). Система содержит два бака для сбора воды: бак 30 и бак 31 с системой подпитки 32 воды, затрачиваемой на испарение. Баки 30 и 31 (емкости) соединены между собой компенсационной трубой, обеспечивающей гидравлическую независимость контуров приготовления рабочей воды и ее потребления.
Бак 30 соединен с насосом 38, который подает горячую воду потребителю 35, который отбирает тепло этой воды либо посредством тепломассообменных аппаратов (на чертеже не показано), либо посредством аппаратов конвективного теплообмена, например в системах отопления жилых массивов. На участке между насосом 38 и потребителем 35 установлена система контроля гидравлического сопротивления системы, состоящая из манометра 36 и вентиля 37. После охлаждения воды в потребителе 35 она снова поступает через вентиль 34 по трубопроводу 33 во второй бак 31, из которого охлажденная вода насосом 39 через фильтр 40 и вентиль 41 подается по трубопроводу в водораспределительную и оросительного системы градирни 11. На участке между фильтром 40 и вентилем 41 установлена система контроля гидравлического сопротивления фильтра 40, состоящая из манометра 42 и вентиля 43. Наряду с оборотной, используют прямоточное водоснабжение, при котором охлаждающая вода поступает в конденсатор 12 прямо из реки и сбрасывается в нее ниже по течению (на чертеже не показано).
Пар, поступающий из турбины в межтрубное пространство конденсатора 12, конденсируется и стекает вниз; образующийся конденсат конденсатным насосом 6 подается через фильтр 5, гидроаккумулятор 4 и группу регенеративных подогревателей низкого давления (ПНД) 3 - в деаэратор 8. В ПНД температура конденсата повышается за счет теплоты конденсации пара, отбираемого из турбины. Это позволяет уменьшить расход топлива в котле и повысить экономичность электростанции. В деаэраторе 8 происходит деаэрация - удаление из конденсата растворенных в нем газов, нарушающих работу котла. Одновременно бак деаэратора представляет собой емкость для питательной воды котла.
Из деаэратора питательная вода питательным насосом 7, приводимым в действие электродвигателем или специальной паровой турбиной, подается в группу подогревателей высокого давления (ПВД) 18.
Регенеративный подогрев конденсата в ПНД 3 и ПВД 18 - это основной и очень выгодный способ повышения КПД ТЭС. Пар, который расширился в турбине от входа до трубопровода отбора, выработал определенную мощность, а поступив в регенеративный подогреватель, передал свое тепло конденсации питательной воде (а не охлаждающей как в прототипе), повысив ее температуру и тем самым сэкономив расход топлива в котле. Температура питательной воды котла за ПВД, т.е. перед поступлением в котел, составляет в зависимости от начальных параметров 240÷280°C. Таким образом замыкается технологический пароводяной цикл преобразования химической энергии топлива в механическую энергию вращения ротора турбоагрегата. Газообразные продукты сгорания топлива, отдав свою основную теплоту питательной воде, поступают на трубы экономайзера 24 и в воздухоподогреватель 25, в которых они охлаждаются до температуры 140÷160°C и направляются с помощью дымососа 27 к дымовой трубе 26.
Акустическая кабина оператора станции содержит основание 101 (фиг.2), установленное на, по крайней мере, три пневматических виброизолятора 105, выполненных в виде резинокордной оболочки. К основанию жестко крепится каркас кабины, выполненный в виде многоугольной призмы с ребрами, перпендикулярными основанию 101 кабины, и состоящий из передней стенки 102, с остеклением 104, выполненным из шумоотражающей светопрозрачной панели, потолочной части 103 со светильниками 112, задней стенки 114, расположенной в плоскости, параллельной плоскости передней стенки 102, и четырех боковых стенок, в одной из которых установлена дверь 111. При этом площадь задней стенки 114, по крайней мере, в 2 раза больше площади передней стенки 102, а боковые стенки, примыкающие к передней стенке, выполнены наклонными по отношению к ней и с остеклением, а примыкающие к задней стенке - перпендикулярны к ней.
Кабина выполнена герметичной и оборудована системой жизнеобеспечения в виде системы искусственного микроклимата 113 с пультом управления 109, а также рабочим местом, включающим в себя рабочий стол 106, стул 107 с виброизоляторами 108 в виде пластин из эластомера, прикрепленных к ножкам стула, и вешалку для сменной одежды 110.
Каркас кабины выполнен в виде акустических шумопоглощающих панелей (фиг.3), каркас которых выполнен в виде параллелепипеда, образованного передней 215 и задней 216 стенками панели, каждая из которых имеет П-образную форму, причем на передней стенке имеется щелевая перфорация 217 и 218, коэффициент перфорации которой принимается равным или более 0,25, а стенки панели фиксируются между собой вибродемпфирующими крышками 219, а в качестве звукопоглощающего материала 220 звукопоглощающего элемента используются плиты из минеральной ваты на базальтовой основе типа «Rockwool». Для жесткости каркаса предусмотрены боковые ребра 221 на стенках 215 и 216. В качестве звукопоглощающего материала могут использоваться слои минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа Э3-100 или полимером типа «Повиден». В качестве звукопоглощающего материала акустической шумопоглощающей панели используются плиты на основе алюмине-содержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочности на изгиб в пределах 10…20 Мпа, а передняя и задняя стопки каркаса выполнены из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм, причем отношение высоты h каркаса к его ширине b находится в оптимальном отношении величин: h/b=1,0…2,0; а отношение толщины s' каркаса в сборе к его ширине b находится в оптимальном отношении величин: s'/b=0,1…0,15; а отношение толщины s звукопоглощающего элемента к толщине s' каркаса в сборе находится в оптимальном отношении величин: s/s'=0,4…1,0, а вибродемпфирующие крышки, фиксирующие стенки панели, выполнены из эластомера, пенополиуретана или пенополиэтилена, древесно-волокнистого, древесностружечного материала, или гипсо-асбокартона, или эластичного листового вибропоглощающего материала с коэффициентом внутренних потерь не ниже 0,2, или композитного материала, или пластиката типа «Агат», «Антивибрит», «Швим».
Остекление кабины выполнено в виде шумоотражающей светопрозрачной панели (фиг.4), выполненной в виде многоугольника, например прямоугольника, образованного П-образной формы ребрами 222-225, выполненными из вибродемпфирующего материала, а в качестве шумоотражающего светопрозрачного элемента используется панель из сплошного листа 226 экструдированного поликарбонатного пластика, причем отношение длины прямоугольника к его высоте лежит в интервале от 2 до 3, а отношение толщины сплошного листа экструдированного поликарбонатного пластика к его высоте находится в оптимальном интервале величин: 0,006…0,008.2, а в качестве шумоотражающего светопрозрачного элемента используется панель из ячеистого листа 227 экструдированного поликарбонатного пластика с отношением длины прямоугольника к его высоте, находящимся в оптимальном отношении величин: 2,0…3,0, а отношение толщины ячеистого листа экструдированного поликарбонатного пластика к его высоте находится в оптимальном интервале величин: 0,016…0,02, а ячейки 228 ячеистого листа экструдированного поликарбонатного пластика выполнены в виде боковых поверхностей многогранных прямоугольных призм, например квадратного или прямоугольного сечения, грани 229 или ребра которых жестко связаны между собой и с со сплошными листами экструдированного поликарбонатного пластика, расположенными по обе стороны от ячеек.
Конденсационная паротурбинная электростанция работает следующим образом. В паровой турбинной установке (ПТУ) над рабочим телом совершается непрерывный цикл преобразования химической энергии сжигаемого топлива в электрическую энергию. Кроме перечисленных элементов, реальная ПТУ дополнительно содержит большое число насосов, теплообменников и других аппаратов, необходимых для повышения ее эффективности.
Газ для работы котла подается от газораспределительной станции 1, подключенной к магистральному газопроводу (на чертеже не показан). Давление газа в газораспределительной станции 1 снижается до нескольких атмосфер, и газ подается к горелкам 2, расположенным в поде котла (в случае применения горелок подовых). Котел представляет собой, например, (как вариант) П-образную конструкцию с газоходами прямоугольного сечения, причем левая часть является топкой. Внутренняя часть топки свободна, и в ней происходит горение топлива, в рассматриваемом случае газа. К горелкам 2 специальным дутьевым вентилятором 28 непрерывно подается горячий воздух, нагреваемый в воздухоподогревателе 25, например вращающимся воздухоподогревателе, теплоаккумулирующая набивка которого на первой половине оборота обогревается уходящими дымовыми газами, а на второй половине оборота - нагревает поступающий из атмосферы воздух. Для повышения температуры воздуха используется рециркуляция: часть дымовых газов, уходящих из котла, специальным вентилятором рециркуляции 29 полается к основному воздуху и смешивается с ним. Горячий воздух смешивается с газом и через горелки 2 котла подается в его топку - камеру, в которой происходит горение топлива. При горении образуется факел, представляющий собой мощный источник лучистой энергии. Таким образом, при горении топлива его химическая энергия превращается в тепловую и лучистую энергию факела.
Сухой насыщенный пар поступает в основной пароперегреватель, состоящий из потолочного 20, ширмового 21 и конвективного 22 элементов. В основном пароперегревателе повышается его температура и, следовательно, потенциальная энергия. Полученный на выходе из конвективного пароперегревателя пар высоких параметров покидает котел и поступает по паропроводу к паровому турбоагрегату, в котором, расширяясь в турбине, пар вращает ее ротор, соединенный с ротором электрического генератора 14, в статорных обмотках 13 которого образуется электрический ток. Трансформатор повышает его напряжение для уменьшения потерь в линиях электропередачи, передает часть выработанной энергии на питание собственных нужд ТЭС, а остальную электроэнергию отпускает в энергосистему по ЛЭП.
Пар, покидающий ЦНД турбины, поступает в конденсатор 12, представляющий собой теплообменник, по трубкам которого непрерывно протекает охлаждающая вода, подаваемая циркуляционным насосом 9 из аванкамеры 10 градирни 11 (а также возможна схема подачи из водохранилища или реки). Градирня 11 выполнена с системой оборотного водоснабжения, которая имеет раздельные гидравлические контуры приготовления и потребления воды для градирни (возможен вариант с несколькими параллельно соединенными градирнями - на чертеже не показано). Наряду с оборотной, используют прямоточное водоснабжение, при котором охлаждающая вода поступает в конденсатор 12 прямо из реки и сбрасывается в нее ниже по течению (на чертеже не показано).
Пар, поступающий из турбины в межтрубное пространство конденсатора-12, конденсируется и стекает вниз; образующийся конденсат конденсатным насосом 6 подается через фильтр 5, гидроаккумулятор 4 и группу регенеративных подогревателей низкого давления (ПНД) 3 - в деаэратор 8. В ПНД температура конденсата повышается за счет теплоты конденсации пара, отбираемого из турбины. Это позволяет уменьшить расход топлива в котле и повысить экономичность электростанции. В деаэраторе 8 происходит деаэрация - удаление из конденсата растворенных в нем газов, нарушающих работу котла. Одновременно бак деаэратора представляет собой емкость для питательной воды котла. Из деаэратора питательная вода питательным насосом 7, приводимым в действие электродвигателем или специальной паровой турбиной, подается в группу подогревателей высокого давления (ПВД) 18.
Газообразные продукты сгорания топлива, отдав свою основную теплоту питательной воде, поступают на трубы экономайзера 24 и в воздухоподогреватель 25, в которых они охлаждаются до температуры 140-160°C и направляются с помощью дымососа 27 к дымовой трубе 26. Дымовая труба создает разрежение в топке и газоходах котла; кроме того, она рассеивает вредные продукты сгорания в верхних слоях атмосферы, не допуская их высокой концентрации в нижних слоях.
Акустическая кабина оператора компрессорной станции работает следующим образом.
Звуковая энергия от оборудования, находящемся в помещении, где устанавливается кабина, пройдя через перфорированную стенку 215, попадает на слои звукопоглощающего материала 220 (который может быть как мягким, например из базальтового или стеклянного волокна, так и жестким, например типа "акмигран" и т.п.). Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Коэффициент перфорации перфорированной стенки 215 принимается равным или более 0,25. Для предотвращения высыпания мягкого звукопоглотителя предусмотрена стеклоткань, например типа ЭЗ-100, расположенная между звукопоглотителем и перфорированной стенкой 215. Запыленный воздух от оборудования, находящегося в помещении, где устанавливается кабина, пройдя через систему жизнеобеспечения 213, приобретает свойства, отвечающие санитарно-гигиеническим требованиям на рабочих местах.
Предложенная акустическая кабина является эффективным способом борьбы с производственными шумами.
название | год | авторы | номер документа |
---|---|---|---|
КОНДЕНСАЦИОННАЯ ПАРОТУРБИННАЯ ЭЛЕКТРОСТАНЦИЯ С АКУСТИЧЕСКОЙ КАБИНОЙ ДЛЯ ОПЕРАТОРА | 2013 |
|
RU2531461C1 |
КОНДЕНСАЦИОННАЯ ПАРОТУРБИННАЯ ЭЛЕКТРОСТАНЦИЯ | 2011 |
|
RU2463460C1 |
КОНДЕНСАЦИОННАЯ ПАРОТУРБИННАЯ ЭЛЕКТРОСТАНЦИЯ КОЧЕТОВА | 2013 |
|
RU2539696C1 |
КОНДЕНСАЦИОННАЯ ПАРОТУРБИННАЯ ЭЛЕКТРОСТАНЦИЯ КОЧЕТОВА | 2015 |
|
RU2576698C1 |
КОНДЕНСАЦИОННАЯ ПАРОТУРБИННАЯ ЭЛЕКТРОСТАНЦИЯ КОЧЕТОВА | 2016 |
|
RU2623005C1 |
СТАЦИОНАРНАЯ КОМПРЕССОРНАЯ УСТАНОВКА | 2011 |
|
RU2480625C1 |
АКУСТИЧЕСКАЯ КАБИНА ОПЕРАТОРА КОМПРЕССОРНОЙ СТАНЦИИ | 2010 |
|
RU2420635C1 |
АКУСТИЧЕСКАЯ КАБИНА КОЧЕТОВА | 2013 |
|
RU2551148C2 |
АКУСТИЧЕСКИЙ ЭКРАН КОЧЕТОВА | 2013 |
|
RU2528357C1 |
АКУСТИЧЕСКИЙ ЭКРАН КОЧЕТОВЫХ | 2013 |
|
RU2530287C1 |
Изобретение относится к теплоэнергетике. Конденсационная паротурбинная электростанция содержит акустическую кабину оператора, выполненную герметичной и оборудованной системой жизнеобеспечения в виде системы искусственного микроклимата с пультом управления, а также рабочим местом. Каркас кабины выполнен в виде акустических шумопоглащающих панелей. Изобретение позволяет повысить эффективность работы электростанции, рационально использовать вторичные энергоресурсы, а также улучшить условия труда обслуживающего персонала. 4 ил.
Конденсационная паротурбинная электростанция с акустической кабиной оператора, содержащая котельную установку, производящую пар высоких параметров, паротурбинную установку, преобразующую теплоту пара в механическую энергию, и электрические устройства, обеспечивающие выработку электроэнергии потребителю, кабина содержит основание, каркас, оборудование жизнеобеспечения, оконные и дверные проемы и ограждения в виде акустических панелей, основание установлено на, по крайней мере, три пневматических виброизолятора, выполненных в виде резинокордной оболочки, а к нему жестко крепится каркас кабины, выполненный в виде многоугольной призмы с ребрами, перпендикулярными основанию кабины, и состоящий из передней стенки, с остеклением, выполненным из шумоотражающей светопрозрачной панели, потолочной части со светильниками, задней стенки, расположенной в плоскости, параллельной плоскости передней стенки, и четырех боковых стенок, в одной из которых установлена дверь, при этом площадь задней стенки, по крайней мере, в 2 раза больше площади передней стенки, а боковые стенки, примыкающие к передней стенке, выполнены наклонными по отношению к ней и с остеклением, а примыкающие к задней стенке - перпендикулярны к ней, причем кабина выполнена герметичной и оборудована системой жизнеобеспечения в виде системы искусственного микроклимата с пультом управления, а также рабочим местом, включающим в себя рабочий стол, стул с виброизоляторами в виде пластин из эластомера, прикрепленных к ножкам стула, и вешалку для сменной одежды, а каркас кабины выполнен в виде акустических шумопоглощающих панелей, каркас которых выполнен в виде параллелепипеда, образованного передней и задней стенками панели, каждая из которых имеет П-образную форму, причем на передней стенке имеется щелевая перфорация, коэффициент перфорации которой принимается равным или более 0,25, а стенки панели фиксируются между собой вибродемпфирующими крышками, а в качестве звукопоглощающего материала звукопоглощающего элемента используются плиты из минеральной ваты на базальтовой основе типа «Rockwool».
ТРУХНИЙ А.Д | |||
и др | |||
Теплофикационные паровые турбины и турбоустановки | |||
- М.: Издательство МЭИ, 2002, с.11-15, рис.1.1 | |||
СИСТЕМА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ (ВАРИАНТЫ) | 2009 |
|
RU2407970C1 |
РЫЖКИН В.Я | |||
Тепловые электрические станции | |||
- М.: Энергия, с.389-390, рис.23-14 | |||
RU 2005138978 A, 20.06.2007 | |||
АКУСТИЧЕСКАЯ КОНСТРУКЦИЯ ДЛЯ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ | 2007 |
|
RU2366785C2 |
Распределитель шихты загрузочного устройства доменной печи | 1982 |
|
SU1113414A1 |
Авторы
Даты
2013-06-10—Публикация
2011-12-08—Подача