СПОСОБ КОНТРОЛЯ ОБЪЕМНО-НАПРЯЖЕННОГО СОСТОЯНИЯ СРЕДЫ В СЕЙСМООПАСНОМ РЕГИОНЕ Российский патент 2013 года по МПК G01V11/00 G01V9/00 

Описание патента на изобретение RU2487375C1

Изобретение относится к области, с одной стороны, геофизики, а с другой, - к физике космических лучей (регистрации широких атмосферных ливней (ШАЛ) и мюонов).

В настоящее время установлено, что из будущих очагов землетрясений хорошо распространяются деформационные процессы, которые приводят к образованию зон поверхностной дилатансии размером до сотен километров [1, 2]. В результате на больших расстояниях от очага готовящегося землетрясения формируется отклик породы на динамическую локальную перестройку структуры, и он сопровождается испусканием импульсов высокочастотных акустических и сейсмических (микросейсмы) волн как из-за образования микроразломов и трещин, так и из-за подвижек в существующих разломах. Наблюдаемые сигналы высокочастотной геоакустической эмиссии из-за большого затухания не распространяются из далекого очага готовящегося землетрясения, а генерируются в непосредственной близости от места наблюдения под действием деформационных сил.

Также известно [3], что мюоны высоких энергий, производя каскад в сейсмически активной среде, могут быть триггером для раскрытия мелких трещин с испусканием звука и сейсмических волн с характерными частотами, доходящими до первых десятков килогерц. Амплитуда и спектр сигнала определяются как свойствами среды (величиной упругого напряжения) в месте локализации мюонного каскада, так и его параметрами. Из-за большого затухания высокочастотных сейсмоакустических волн в горных породах спектр сигнала практически ограничен 15 кГц [1, 2]. Важно, что мюоны высоких энергий могут проникать на глубины до 10 км и более, а индуцированное сейсмоакустическое излучение может использоваться для оценки объемно-напряженного состояния среды (ОНС). Наиболее удобно использовать мюонные пучки от широких атмосферных ливней (ШАЛ).

Наиболее близким по технической сущности к заявляемому изобретению является способ скважинной сейсмической разведки [4], заключающийся в непрерывной регистрации сейсмоакустической эмиссии (САЭ) во внутренних точках среды, получении кривых интенсивности сейсмоакустической эмиссии и суждении по их ходу о состоянии геологической среды. Недостатком известного способа [4] является невысокая достоверность и надежность измерений ОНС, являющаяся следствием того, в способе [4] используется только пассивная регистрация сейсмических волн в одном канале и в одной скважине.

Задачей, решаемой изобретением, является создание надежного инструментального способа контроля, использующего наряду с пассивным мониторингом, еще и активное зондирование среды мюонами космических лучей для повышения достоверности. Достоверность предлагаемого способа контроля обеспечивается использованием эффекта сейсмоакустической эмиссии, вызываемой мюонами высокой энергии, поскольку по характеристикам сейсмического и акустического излучений можно судить об особенностях ОНС, характеризующих приближение к моменту землетрясения.

Задача решается следующим образом. В известном способе скважинной сейсмической разведки, заключающемся в непрерывной регистрации сейсмоакустической эмиссии во внутренних точках среды, получении кривых интенсивности сейсмоакустической эмиссии и суждении по их ходу о состоянии геологической среды, дополнительно проводят непрерывный мониторинг потока мюонов высоких энергий с помощью мюонного телескопа (МТ) и установки по регистрации широких атмосферных ливней (ШАЛ). Кроме того, производится мониторинг сейсмической и акустической эмиссий сейсмоопасной среды в нескольких широкополосных каналах в полосе частот 20-5000 Гц, а также частотно (несколько частотных каналов) и пространственно (несколько скважин) разнесенных акустических и сейсмических каналах. Локализация источника САЭ производится методом триангуляции по временным задержкам прихода импульсного сигнала в разных каналах, и устанавливается временная корреляция между мюонным и акустическим и сейсмическим сигналами в разных диапазонах частот. ОНС и его эволюция во времени на стадии подготовки землетрясения определяется по амплитудам, спектрам и частоте следования во времени сигналов САЭ в фоновом режиме и сигналов САЭ, индуцированных мюонами, так что признаком приближающегося землетрясения является характерное для данного региона поведение амплитуды и спектра САЭ и увеличение частоты следования во времени сигналов САЭ. Указанная полоса частот 20-5000 Гц перекрывает акустические и сейсмические моды отклика среды, что подтверждено в экспериментах [1, 2]. Использование более высоких частот из-за сильного их затухания вряд ли целесообразно из экономических соображений, так как требует большего числа более плотно расположенных скважин. Сочетание пассивного и активного мониторинга среды позволяет повысить достоверность и надежность контроля ОНС по сравнению с прежними методами. При дальнейшем развитии новый метод в перспективе может привести к появлению нового метода краткосрочного прогноза землетрясений.

Предложенный способ позволяет использовать относительно глубокие скважины, что дает возможность исследования глубоких слоев (глубина до нескольких км) земной коры, максимально приближенных к очагу землетрясения, что исключает маскирующую роль приповерхностных (например, осадочных) слоев. Тем самым использованная глубокая проникающая способность мюонов повышает достоверность информации об ОНС. Наконец, использование частотно разнесенного приема сигнала позволяет увеличить чувствительность установки с целью повышения контролируемого объема среды и контроля максимально близкой к очагу землетрясения области.

Приведем расчетный пример, показывающий реальную возможность зарегистрировать отклик сейсмически активной среды на воздействие мюонами высоких энергий. Рассмотрим такую схему регистрации САЭ, индуцированного каскадом от мюона с энергией более 1015 эВ на глубине порядка 1 км в САС, находящейся в напряженном состоянии. Такое энерговыделение в цилиндре радиусом 5 см и длиной порядка 1 м может служить триггером для раскрытия трещины размером порядка 1 см и более. Примем консервативную оценку выделенной упругой энергии реальной трещины в горной породе на уровне 1% от типичной энергии хрупкого разрушения Етр0l3, здесь σ0 - напряжение разрушения, а l - размер трещины. Положим σ0=1010 дин/см2 и l=1 см, тогда получим выделенную упругую энергию Emp=108 эрг. Эту энергию нужно подставить в формулу [3]

d E / d s d f = 2 10 39 f 2 E m p 2 exp ( f 2 / f 0 2 ) exp ( 2 γ R ) / 4 π R 2

Здесь энергия Е измеряется в джоулях, площадь s - в см2, частота f - в Гц, энергию трещины Emp надо подставлять в ГэВ (109 эВ), R - расстояние от трещины до приемника САЭ (полоса приема 20-5000 Гц), коэффициент затухания γ зависит от частоты и на средней частоте 2500 Гц принимается γ≈0,15 м-1 в соответствии с экспериментальными данными. Частота f0 обрезания спектра для трещины 1 см составляет около 500 кГц. Интегрирование энергии по спектру приближенно дает dE/ds=3·10-21 Дж/см2. С учетом диаграммы направленность акустического излучения трещины в благоприятных направлениях может быть несколько больше. Эту энергию САЭ надо сравнивать с энергией шумового излучения, минимальное значение которого в области частот порядка 1 кГц приведено в [3] и составляет 3·10-21 Дж/см2. Превышение минимальных шумов на 20 дБ можно считать достаточным запасом для регистрации САЭ чувствительными приемниками. В менее благоприятных условиях больших шумов повышается вероятность раскрытия более крупных трещин и увеличения полезного сигнала, так как больший уровень шума связан с большей плотностью и большим размером микротрещин в среде.

Технико-экономическая эффективность предлагаемого способа состоит в том, что появляется возможность более достоверного инструментального контроля ОНС. Предлагаемый способ может быть использован в системах прогноза землетрясений и может дать большой социальный и экономический эффект.

Источники информации

1. Геоакустическая локация областей подготовки землетрясений. В.А.Гордиенко, Т.В.Гордиенко, А.В.Купцов и др. // Докл. Акад. наук. - 2006. - Т.407. - №5. - С.669-672.

2. Купцов А.В., Ларионов И.А., Шевцов Б.М. Особенности геоакустической эмиссии при подготовке камчатских землетрясений // Вулканология и сейсмология. - 2005. - №5. - С.45-59.

3. В.А.Царев, В.А.Чечин, Атмосферные мюоны и высокочастотные сейсмические шумы, Препринт ФИАН №179, 1988. 26 с.

4. Авторское свидетельство СССР № 1236394, кл. G01V 1/00, 1984.

Похожие патенты RU2487375C1

название год авторы номер документа
СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ 2005
  • Кузнецов Олег Леонидович
  • Дыбленко Валерий Петрович
  • Чиркин Игорь Алексеевич
  • Хасанов Марс Магнавиевич
  • Лукьянов Юрий Викторович
  • Хисамов Раис Салихович
  • Назаров Сергей Анатольевич
  • Евченко Виктор Семенович
  • Шарифуллин Ришад Яхиевич
  • Солоницин Сергей Николаевич
  • Панкратов Евгений Михайлович
  • Шленкин Сергей Иванович
  • Волков Антон Владимирович
  • Жуков Андрей Сергеевич
  • Каширин Геннадий Викторович
  • Воробьев Александр Сергеевич
RU2291955C1
СПОСОБ ВЫБОРА МЕСТ ДЛЯ УСТАНОВКИ СЕЙСМОАКУСТИЧЕСКИХ СТАНЦИЙ ПРИ КРАТКОСРОЧНОМ ПРОГНОЗЕ ЗЕМЛЕТРЯСЕНИЙ 2009
  • Глинская Надежда Викторовна
RU2439619C2
Способ обнаружения комплексного предвестника землетрясений 2020
  • Сенкевич Юрий Игоревич
  • Марапулец Юрий Валентинович
  • Луковенкова Ольга Олеговна
  • Солодчук Александра Андреевна
  • Мищенко Михаил Александрович
  • Малкин Евгений Ильич
  • Гапеев Максим Игоревич
RU2758582C1
СПОСОБ КОНТРОЛЯ ЗЕМЛЕТРЯСЕНИЙ 1996
  • Хамидуллин Явдат Накипович
RU2102780C1
СПОСОБ ОБНАРУЖЕНИЯ ВОЗМОЖНОСТИ НАСТУПЛЕНИЯ КАТАСТРОФИЧЕСКИХ ЯВЛЕНИЙ 2011
  • Левченко Дмитрий Герасимович
  • Жуков Юрий Николаевич
  • Чернявец Владимир Васильевич
  • Аносов Виктор Сергеевич
  • Жильцов Николай Николаевич
  • Чернявец Антон Владимирович
RU2489736C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ СИСТЕМЫ ТРЕЩИН ГИДРОРАЗРЫВА 2012
  • Касимов Алик Нариман Оглы
  • Шехтман Григорий Аронович
  • Максимов Герман Адольфович
  • Касимов Самир Аликович
  • Чертенков Михаил Васильевич
  • Стенин Владимир Петрович
RU2507396C9
СПОСОБ ОБНАРУЖЕНИЯ ВЫСОКОЧАСТОТНЫХ ГЕОАКУСТИЧЕСКИХ ПРЕДВЕСТНИКОВ ЗЕМЛЕТРЯСЕНИЯ 2013
  • Ларионов Игорь Александрович
  • Марапулец Юрий Валентинович
  • Мищенко Михаил Александрович
  • Шевцов Борис Михайлович
RU2563338C2
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРА НАСЫЩЕННОСТИ КОЛЛЕКТОРА 2001
  • Дрягин В.В.
RU2187636C1
СПОСОБ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ, ДОБЫВАЕМЫХ ЧЕРЕЗ СКВАЖИНЫ 2007
  • Дыбленко Валерий Петрович
  • Кузнецов Олег Леонидович
  • Чиркин Игорь Алексеевич
  • Рогоцкий Геннадий Викторович
  • Ащепков Юрий Сергеевич
  • Шарифуллин Ришад Яхиевич
RU2357073C2
СПОСОБ СЕЙСМИЧЕСКОЙ РАЗВЕДКИ ПРИ ПОИСКАХ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ 1996
  • Бутенко Г.А.
  • Михайлов В.А.
  • Тикшаев В.В.
RU2105324C1

Реферат патента 2013 года СПОСОБ КОНТРОЛЯ ОБЪЕМНО-НАПРЯЖЕННОГО СОСТОЯНИЯ СРЕДЫ В СЕЙСМООПАСНОМ РЕГИОНЕ

Изобретение относится к области геофизики, а также к области физики космических лучей и может быть использовано при контроле объемно-напряженного состояния среды (ОНС) в сейсмоопасной области и прогнозе сильных землетрясений. Согласно заявленному решению в дополнение к непрерывному контролю сейсмоакустической эмиссии (САЭ) во внутренних точках среды производят наблюдения в частотно и пространственно разнесенных каналах, регистрацию широких атмосферных ливней (ШАЛ) и мюонов. Устанавливают корреляцию времени прихода ШАЛ и мюонов с временем прихода сигналов САЭ, а также определяют локализацию источников САЭ. Об ОНС среды судят по амплитудам, спектрам и частоте следования во времени сигналов САЭ в фоновом режиме и сигналов САЭ, индуцированных мюонами. Признаком приближающегося землетрясения является характерное для данного региона поведение амплитуды и спектра САЭ и увеличение частоты следования во времени сигналов САЭ. Технический результат: повышение точности прогнозирования катастрофических явлений.

Формула изобретения RU 2 487 375 C1

Способ контроля объемно-напряженного состояния среды (ОНС) в сейсмоопасном регионе, заключающийся в непрерывной регистрации сейсмоакустической эмиссии (САЭ) во внутренних точках среды, получении кривых интенсивности сейсмоакустической эмиссии и суждении по их ходу о напряженном состоянии геологической среды, отличающийся тем, что дополнительно проводят непрерывный мониторинг потока мюонов высоких энергий с помощью мюонного телескопа (МТ) и установки по регистрации широких атмосферных ливней (ШАЛ), сейсмическая и акустическая эмиссия сейсмоопасной среды мониторируется в нескольких широкополосных с полосой 20-5000 Гц, а также частотно (несколько частотных каналов) и пространственно (несколько скважин) разнесенных акустических и сейсмических каналах, производится локализация источника акустической и сейсмической эмиссии (САЭ) методом триангуляции по временным задержкам прихода импульсного сигнала в разных каналах, устанавливается временная корреляция между мюонным и акустическим и сейсмическим сигналами в разных диапазонах частот, и ОНС и его эволюция во времени на стадии подготовки землетрясения определяется по амплитудам, спектрам и частоте следования во времени сигналов САЭ в фоновом режиме и сигналов САЭ, индуцированных мюонами, так что признаком приближающегося землетрясения является характерное для данного региона поведение амплитуды и спектра САЭ и увеличение частоты следования во времени сигналов САЭ.

Документы, цитированные в отчете о поиске Патент 2013 года RU2487375C1

Способ скважинной сейсмической разведки 1984
  • Дьяконов Борис Петрович
  • Улитин Руслан Васильевич
  • Троянов Александр Кузмич
  • Фадеев Владислав Афанасьевич
SU1236394A1
СПОСОБ ГЕОФИЗИЧЕСКОЙ РАЗВЕДКИ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ С ИСПОЛЬЗОВАНИЕМ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 1998
  • Ковалев Р.П.
RU2145104C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ЗЕМЛЕТРЯСЕНИЙ 2005
  • Давыдова Светлана Вячеславовна
  • Корольков Анатолий Владимирович
  • Липеровский Виктор Андреевич
  • Давыдов Вячеслав Федорович
  • Липеровская Елена Викторовна
RU2309438C2
СПОСОБ ПРОГНОЗИРОВАНИЯ КАТАСТРОФ, ВЫЗЫВАЕМЫХ НАКОПЛЕНИЕМ ЭНЕРГИИ В СФЕРАХ ЗЕМЛИ 1994
  • Авдюшин С.И.
  • Антонец А.И.
  • Виноградов В.В.
  • Данилкин Н.П.
  • Зайцев А.В.
  • Ковтуненко В.М.
  • Лощенков В.И.
  • Прибыловский А.С.
  • Тростин В.Г.
  • Чесноков А.Г.
RU2092877C1
СПОСОБ ПОИСКА МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ ПО СОБСТВЕННОМУ ИЗЛУЧЕНИЮ, УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И МИКРОЛЕПТОННЫЙ ИНДИКАТОР 1997
  • Охатрин А.Ф.
  • Охатрин А.А.
  • Сизов В.С.
RU2113000C1
US 7488934 В2, 10.02.2009.

RU 2 487 375 C1

Авторы

Гусев Герман Александрович

Жуков Валерий Витальевич

Мерзон Габриэль Израилевич

Митько Галина Григорьевна

Рябов Владимир Алексеевич

Степанов Алексей Владимирович

Чубенко Александр Поликарпович

Чечин Валерий Андреевич

Щепетов Александр Леонидович

Даты

2013-07-10Публикация

2012-02-20Подача